1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-01 18:55:59 +00:00
ccminer/x11/cuda_x11_simd512_sm2.cuh
2015-11-01 13:35:36 +01:00

576 lines
16 KiB
Plaintext

/***************************************************************************************************
* SM 2.x SIMD512 CUDA Implementation without shuffle
*
* cbuchner 2014 / tpruvot 2015
*/
#include "cuda_helper.h"
#ifdef __INTELLISENSE__
/* just for vstudio code colors */
#define __CUDA_ARCH__ 210
#endif
#if __CUDA_ARCH__ < 300
#define T32(x) (x)
#if 0 /* already declared in SM 3+ implementation */
__constant__ uint32_t c_IV_512[32];
const uint32_t h_IV_512[32] = {
0x0ba16b95, 0x72f999ad, 0x9fecc2ae, 0xba3264fc, 0x5e894929, 0x8e9f30e5, 0x2f1daa37, 0xf0f2c558,
0xac506643, 0xa90635a5, 0xe25b878b, 0xaab7878f, 0x88817f7a, 0x0a02892b, 0x559a7550, 0x598f657e,
0x7eef60a1, 0x6b70e3e8, 0x9c1714d1, 0xb958e2a8, 0xab02675e, 0xed1c014f, 0xcd8d65bb, 0xfdb7a257,
0x09254899, 0xd699c7bc, 0x9019b6dc, 0x2b9022e4, 0x8fa14956, 0x21bf9bd3, 0xb94d0943, 0x6ffddc22
};
__constant__ int c_FFT128_8_16_Twiddle[128];
static const int h_FFT128_8_16_Twiddle[128] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 60, 2, 120, 4, -17, 8, -34, 16, -68, 32, 121, 64, -15, 128, -30,
1, 46, 60, -67, 2, 92, 120, 123, 4, -73, -17, -11, 8, 111, -34, -22,
1, -67, 120, -73, 8, -22, -68, -70, 64, 81, -30, -46, -2,-123, 17,-111,
1,-118, 46, -31, 60, 116, -67, -61, 2, 21, 92, -62, 120, -25, 123,-122,
1, 116, 92,-122, -17, 84, -22, 18, 32, 114, 117, -49, -30, 118, 67, 62,
1, -31, -67, 21, 120, -122, -73, -50, 8, 9, -22, -89, -68, 52, -70, 114,
1, -61, 123, -50, -34, 18, -70, -99, 128, -98, 67, 25, 17, -9, 35, -79
};
__constant__ int c_FFT256_2_128_Twiddle[128];
static const int h_FFT256_2_128_Twiddle[128] = {
1, 41,-118, 45, 46, 87, -31, 14,
60,-110, 116,-127, -67, 80, -61, 69,
2, 82, 21, 90, 92, -83, -62, 28,
120, 37, -25, 3, 123, -97,-122,-119,
4, -93, 42, -77, -73, 91,-124, 56,
-17, 74, -50, 6, -11, 63, 13, 19,
8, 71, 84, 103, 111, -75, 9, 112,
-34,-109,-100, 12, -22, 126, 26, 38,
16,-115, -89, -51, -35, 107, 18, -33,
-68, 39, 57, 24, -44, -5, 52, 76,
32, 27, 79,-102, -70, -43, 36, -66,
121, 78, 114, 48, -88, -10, 104,-105,
64, 54, -99, 53, 117, -86, 72, 125,
-15,-101, -29, 96, 81, -20, -49, 47,
128, 108, 59, 106, -23, 85,-113, -7,
-30, 55, -58, -65, -95, -40, -98, 94
};
#endif
__constant__ int c_FFT[256] = {
// this is the FFT result in revbin permuted order
4, -4, 32, -32, -60, 60, 60, -60, 101, -101, 58, -58, 112, -112, -11, 11, -92, 92,
-119, 119, 42, -42, -82, 82, 32, -32, 32, -32, 121, -121, 17, -17, -47, 47, 63,
-63, 107, -107, -76, 76, -119, 119, -83, 83, 126, -126, 94, -94, -23, 23, -76,
76, -47, 47, 92, -92, -117, 117, 73, -73, -53, 53, 88, -88, -80, 80, -47, 47,
5, -5, 67, -67, 34, -34, 4, -4, 87, -87, -28, 28, -70, 70, -110, 110, -18, 18, 93,
-93, 51, -51, 36, -36, 118, -118, -106, 106, 45, -45, -108, 108, -44, 44, 117,
-117, -121, 121, -37, 37, 65, -65, 37, -37, 40, -40, -42, 42, 91, -91, -128, 128,
-21, 21, 94, -94, -98, 98, -47, 47, 28, -28, 115, -115, 16, -16, -20, 20, 122,
-122, 115, -115, 46, -46, 84, -84, -127, 127, 57, -57, 127, -127, -80, 80, 24,
-24, 15, -15, 29, -29, -78, 78, -126, 126, 16, -16, 52, -52, 55, -55, 110, -110,
-51, 51, -120, 120, -124, 124, -24, 24, -76, 76, 26, -26, -21, 21, -64, 64, -99,
99, 85, -85, -15, 15, -120, 120, -116, 116, 85, -85, 12, -12, -24, 24, 4, -4,
79, -79, 76, -76, 23, -23, 4, -4, -108, 108, -20, 20, 73, -73, -42, 42, -7, 7,
-29, 29, -123, 123, 49, -49, -96, 96, -68, 68, -112, 112, 116, -116, -24, 24, 93,
-93, -125, 125, -86, 86, 117, -117, -91, 91, 42, -42, 87, -87, -117, 117, 102, -102
};
__constant__ int c_P8[32][8] = {
{ 2, 66, 34, 98, 18, 82, 50, 114 },
{ 6, 70, 38, 102, 22, 86, 54, 118 },
{ 0, 64, 32, 96, 16, 80, 48, 112 },
{ 4, 68, 36, 100, 20, 84, 52, 116 },
{ 14, 78, 46, 110, 30, 94, 62, 126 },
{ 10, 74, 42, 106, 26, 90, 58, 122 },
{ 12, 76, 44, 108, 28, 92, 60, 124 },
{ 8, 72, 40, 104, 24, 88, 56, 120 },
{ 15, 79, 47, 111, 31, 95, 63, 127 },
{ 13, 77, 45, 109, 29, 93, 61, 125 },
{ 3, 67, 35, 99, 19, 83, 51, 115 },
{ 1, 65, 33, 97, 17, 81, 49, 113 },
{ 9, 73, 41, 105, 25, 89, 57, 121 },
{ 11, 75, 43, 107, 27, 91, 59, 123 },
{ 5, 69, 37, 101, 21, 85, 53, 117 },
{ 7, 71, 39, 103, 23, 87, 55, 119 },
{ 8, 72, 40, 104, 24, 88, 56, 120 },
{ 4, 68, 36, 100, 20, 84, 52, 116 },
{ 14, 78, 46, 110, 30, 94, 62, 126 },
{ 2, 66, 34, 98, 18, 82, 50, 114 },
{ 6, 70, 38, 102, 22, 86, 54, 118 },
{ 10, 74, 42, 106, 26, 90, 58, 122 },
{ 0, 64, 32, 96, 16, 80, 48, 112 },
{ 12, 76, 44, 108, 28, 92, 60, 124 },
{ 134, 198, 166, 230, 150, 214, 182, 246 },
{ 128, 192, 160, 224, 144, 208, 176, 240 },
{ 136, 200, 168, 232, 152, 216, 184, 248 },
{ 142, 206, 174, 238, 158, 222, 190, 254 },
{ 140, 204, 172, 236, 156, 220, 188, 252 },
{ 138, 202, 170, 234, 154, 218, 186, 250 },
{ 130, 194, 162, 226, 146, 210, 178, 242 },
{ 132, 196, 164, 228, 148, 212, 180, 244 },
};
__constant__ int c_Q8[32][8] = {
{ 130, 194, 162, 226, 146, 210, 178, 242 },
{ 134, 198, 166, 230, 150, 214, 182, 246 },
{ 128, 192, 160, 224, 144, 208, 176, 240 },
{ 132, 196, 164, 228, 148, 212, 180, 244 },
{ 142, 206, 174, 238, 158, 222, 190, 254 },
{ 138, 202, 170, 234, 154, 218, 186, 250 },
{ 140, 204, 172, 236, 156, 220, 188, 252 },
{ 136, 200, 168, 232, 152, 216, 184, 248 },
{ 143, 207, 175, 239, 159, 223, 191, 255 },
{ 141, 205, 173, 237, 157, 221, 189, 253 },
{ 131, 195, 163, 227, 147, 211, 179, 243 },
{ 129, 193, 161, 225, 145, 209, 177, 241 },
{ 137, 201, 169, 233, 153, 217, 185, 249 },
{ 139, 203, 171, 235, 155, 219, 187, 251 },
{ 133, 197, 165, 229, 149, 213, 181, 245 },
{ 135, 199, 167, 231, 151, 215, 183, 247 },
{ 9, 73, 41, 105, 25, 89, 57, 121 },
{ 5, 69, 37, 101, 21, 85, 53, 117 },
{ 15, 79, 47, 111, 31, 95, 63, 127 },
{ 3, 67, 35, 99, 19, 83, 51, 115 },
{ 7, 71, 39, 103, 23, 87, 55, 119 },
{ 11, 75, 43, 107, 27, 91, 59, 123 },
{ 1, 65, 33, 97, 17, 81, 49, 113 },
{ 13, 77, 45, 109, 29, 93, 61, 125 },
{ 135, 199, 167, 231, 151, 215, 183, 247 },
{ 129, 193, 161, 225, 145, 209, 177, 241 },
{ 137, 201, 169, 233, 153, 217, 185, 249 },
{ 143, 207, 175, 239, 159, 223, 191, 255 },
{ 141, 205, 173, 237, 157, 221, 189, 253 },
{ 139, 203, 171, 235, 155, 219, 187, 251 },
{ 131, 195, 163, 227, 147, 211, 179, 243 },
{ 133, 197, 165, 229, 149, 213, 181, 245 },
};
#define p8_xor(x) ( ((x)%7) == 0 ? 1 : \
((x)%7) == 1 ? 6 : \
((x)%7) == 2 ? 2 : \
((x)%7) == 3 ? 3 : \
((x)%7) == 4 ? 5 : \
((x)%7) == 5 ? 7 : 4 )
/************* the round function ****************/
//#define IF(x, y, z) ((((y) ^ (z)) & (x)) ^ (z))
//#define MAJ(x, y, z) (((z) & (y)) | (((z) | (y)) & (x)))
__device__ __forceinline__
void STEP8_IF(const uint32_t *w, const int i, const int r, const int s, uint32_t *A, const uint32_t *B, const uint32_t *C, uint32_t *D)
{
uint32_t R[8];
#pragma unroll 8
for(int j=0; j<8; j++) {
R[j] = ROTL32(A[j], r);
}
#pragma unroll 8
for(int j=0; j<8; j++) {
D[j] = D[j] + w[j] + IF(A[j], B[j], C[j]);
D[j] = T32(ROTL32(T32(D[j]), s) + R[j^p8_xor(i)]);
A[j] = R[j];
}
}
__device__ __forceinline__
void STEP8_MAJ(const uint32_t *w, const int i, const int r, const int s, uint32_t *A, const uint32_t *B, const uint32_t *C, uint32_t *D)
{
uint32_t R[8];
#pragma unroll 8
for(int j=0; j<8; j++) {
R[j] = ROTL32(A[j], r);
}
#pragma unroll 8
for(int j=0; j<8; j++) {
D[j] = D[j] + w[j] + MAJ(A[j], B[j], C[j]);
D[j] = T32(ROTL32(T32(D[j]), s) + R[j^p8_xor(i)]);
A[j] = R[j];
}
}
__device__ __forceinline__
void Round8(uint32_t A[32], const int y[256], int i, int r, int s, int t, int u)
{
uint32_t w[8][8];
int code = i<2? 185: 233;
/*
* The FFT output y is in revbin permuted order,
* but this is included in the tables P and Q
*/
#pragma unroll 8
for(int a=0; a<8; a++) {
#pragma unroll 8
for(int b=0; b<8; b++) {
w[a][b] = __byte_perm( (y[c_P8[8*i+a][b]] * code), (y[c_Q8[8*i+a][b]] * code), 0x5410);
}
}
STEP8_IF(w[0], 8*i+0, r, s, A, &A[8], &A[16], &A[24]);
STEP8_IF(w[1], 8*i+1, s, t, &A[24], A, &A[8], &A[16]);
STEP8_IF(w[2], 8*i+2, t, u, &A[16], &A[24], A, &A[8]);
STEP8_IF(w[3], 8*i+3, u, r, &A[8], &A[16], &A[24], A);
STEP8_MAJ(w[4], 8*i+4, r, s, A, &A[8], &A[16], &A[24]);
STEP8_MAJ(w[5], 8*i+5, s, t, &A[24], A, &A[8], &A[16]);
STEP8_MAJ(w[6], 8*i+6, t, u, &A[16], &A[24], A, &A[8]);
STEP8_MAJ(w[7], 8*i+7, u, r, &A[8], &A[16], &A[24], A);
}
/********************* Message expansion ************************/
/*
* Reduce modulo 257; result is in [-127; 383]
* REDUCE(x) := (x&255) - (x>>8)
*/
#define REDUCE(x) (((x)&255) - ((x)>>8))
/*
* Reduce from [-127; 383] to [-128; 128]
* EXTRA_REDUCE_S(x) := x<=128 ? x : x-257
*/
#define EXTRA_REDUCE_S(x) \
((x)<=128 ? (x) : (x)-257)
/*
* Reduce modulo 257; result is in [-128; 128]
*/
#define REDUCE_FULL_S(x) \
EXTRA_REDUCE_S(REDUCE(x))
__device__ __forceinline__
void FFT_8(int *y, int stripe)
{
/*
* FFT_8 using w=4 as 8th root of unity
* Unrolled decimation in frequency (DIF) radix-2 NTT.
* Output data is in revbin_permuted order.
*/
#define X(i) y[stripe*i]
#define DO_REDUCE(i) \
X(i) = REDUCE(X(i))
#define DO_REDUCE_FULL_S(i) { \
X(i) = REDUCE(X(i)); \
X(i) = EXTRA_REDUCE_S(X(i)); \
}
#define BUTTERFLY(i,j,n) { \
int u= X(i); \
int v= X(j); \
X(i) = u+v; \
X(j) = (u-v) << (2*n); \
}
BUTTERFLY(0, 4, 0);
BUTTERFLY(1, 5, 1);
BUTTERFLY(2, 6, 2);
BUTTERFLY(3, 7, 3);
DO_REDUCE(6);
DO_REDUCE(7);
BUTTERFLY(0, 2, 0);
BUTTERFLY(4, 6, 0);
BUTTERFLY(1, 3, 2);
BUTTERFLY(5, 7, 2);
DO_REDUCE(7);
BUTTERFLY(0, 1, 0);
BUTTERFLY(2, 3, 0);
BUTTERFLY(4, 5, 0);
BUTTERFLY(6, 7, 0);
DO_REDUCE_FULL_S(0);
DO_REDUCE_FULL_S(1);
DO_REDUCE_FULL_S(2);
DO_REDUCE_FULL_S(3);
DO_REDUCE_FULL_S(4);
DO_REDUCE_FULL_S(5);
DO_REDUCE_FULL_S(6);
DO_REDUCE_FULL_S(7);
#undef X
#undef DO_REDUCE
#undef DO_REDUCE_FULL_S
#undef BUTTERFLY
}
__device__ __forceinline__
void FFT_16(int *y, int stripe)
{
/*
* FFT_16 using w=2 as 16th root of unity
* Unrolled decimation in frequency (DIF) radix-2 NTT.
* Output data is in revbin_permuted order.
*/
#define X(i) y[stripe*i]
#define DO_REDUCE(i) \
X(i) = REDUCE(X(i))
#define DO_REDUCE_FULL_S(i) { \
X(i) = REDUCE(X(i)); \
X(i) = EXTRA_REDUCE_S(X(i)); \
}
#define BUTTERFLY(i,j,n) { \
int u= X(i); \
int v= X(j); \
X(i) = u+v; \
X(j) = (u-v) << n; \
}
BUTTERFLY(0, 8, 0);
BUTTERFLY(1, 9, 1);
BUTTERFLY(2, 10, 2);
BUTTERFLY(3, 11, 3);
BUTTERFLY(4, 12, 4);
BUTTERFLY(5, 13, 5);
BUTTERFLY(6, 14, 6);
BUTTERFLY(7, 15, 7);
DO_REDUCE(11);
DO_REDUCE(12);
DO_REDUCE(13);
DO_REDUCE(14);
DO_REDUCE(15);
BUTTERFLY( 0, 4, 0);
BUTTERFLY( 1, 5, 2);
BUTTERFLY( 2, 6, 4);
BUTTERFLY( 3, 7, 6);
BUTTERFLY( 8, 12, 0);
BUTTERFLY( 9, 13, 2);
BUTTERFLY(10, 14, 4);
BUTTERFLY(11, 15, 6);
DO_REDUCE(5);
DO_REDUCE(7);
DO_REDUCE(13);
DO_REDUCE(15);
BUTTERFLY( 0, 2, 0);
BUTTERFLY( 1, 3, 4);
BUTTERFLY( 4, 6, 0);
BUTTERFLY( 5, 7, 4);
BUTTERFLY( 8, 10, 0);
BUTTERFLY(12, 14, 0);
BUTTERFLY( 9, 11, 4);
BUTTERFLY(13, 15, 4);
BUTTERFLY( 0, 1, 0);
BUTTERFLY( 2, 3, 0);
BUTTERFLY( 4, 5, 0);
BUTTERFLY( 6, 7, 0);
BUTTERFLY( 8, 9, 0);
BUTTERFLY(10, 11, 0);
BUTTERFLY(12, 13, 0);
BUTTERFLY(14, 15, 0);
DO_REDUCE_FULL_S( 0);
DO_REDUCE_FULL_S( 1);
DO_REDUCE_FULL_S( 2);
DO_REDUCE_FULL_S( 3);
DO_REDUCE_FULL_S( 4);
DO_REDUCE_FULL_S( 5);
DO_REDUCE_FULL_S( 6);
DO_REDUCE_FULL_S( 7);
DO_REDUCE_FULL_S( 8);
DO_REDUCE_FULL_S( 9);
DO_REDUCE_FULL_S(10);
DO_REDUCE_FULL_S(11);
DO_REDUCE_FULL_S(12);
DO_REDUCE_FULL_S(13);
DO_REDUCE_FULL_S(14);
DO_REDUCE_FULL_S(15);
#undef X
#undef DO_REDUCE
#undef DO_REDUCE_FULL_S
#undef BUTTERFLY
}
__device__ __forceinline__
void FFT_128_full(int *y)
{
#pragma unroll 16
for (int i=0; i<16; i++) {
FFT_8(y+i,16);
}
#pragma unroll 128
for (int i=0; i<128; i++)
/*if (i & 7)*/ y[i] = REDUCE(y[i]*c_FFT128_8_16_Twiddle[i]);
#pragma unroll 8
for (int i=0; i<8; i++) {
FFT_16(y+16*i,1);
}
}
__device__ __forceinline__
void FFT_256_halfzero(int y[256])
{
/*
* FFT_256 using w=41 as 256th root of unity.
* Decimation in frequency (DIF) NTT.
* Output data is in revbin_permuted order.
* In place.
*/
const int tmp = y[127];
#pragma unroll 127
for (int i=0; i<127; i++)
y[128+i] = REDUCE(y[i] * c_FFT256_2_128_Twiddle[i]);
/* handle X^255 with an additionnal butterfly */
y[127] = REDUCE(tmp + 1);
y[255] = REDUCE((tmp - 1) * c_FFT256_2_128_Twiddle[127]);
FFT_128_full(y);
FFT_128_full(y+128);
}
__device__ __forceinline__
void SIMD_Compress(uint32_t A[32], const int *expanded, const uint32_t *M)
{
uint32_t IV[4][8];
/* Save the chaining value for the feed-forward */
#pragma unroll 8
for(int i=0; i<8; i++) {
IV[0][i] = A[i];
IV[1][i] = (&A[8])[i];
IV[2][i] = (&A[16])[i];
IV[3][i] = (&A[24])[i];
}
/* XOR the message to the chaining value */
/* we can XOR word-by-word */
#pragma unroll 8
for(int i=0; i<8; i++) {
A[i] ^= M[i];
(&A[8])[i] ^= M[8+i];
}
/* Run the feistel ladders with the expanded message */
Round8(A, expanded, 0, 3, 23, 17, 27);
Round8(A, expanded, 1, 28, 19, 22, 7);
Round8(A, expanded, 2, 29, 9, 15, 5);
Round8(A, expanded, 3, 4, 13, 10, 25);
STEP8_IF(IV[0], 32, 4, 13, A, &A[8], &A[16], &A[24]);
STEP8_IF(IV[1], 33, 13, 10, &A[24], A, &A[8], &A[16]);
STEP8_IF(IV[2], 34, 10, 25, &A[16], &A[24], A, &A[8]);
STEP8_IF(IV[3], 35, 25, 4, &A[8], &A[16], &A[24], A);
}
/***************************************************/
__device__ __forceinline__
void SIMDHash(const uint32_t *data, uint32_t *hashval)
{
uint32_t A[32];
uint32_t buffer[16];
#pragma unroll 32
for (int i=0; i < 32; i++) A[i] = c_IV_512[i];
#pragma unroll 16
for (int i=0; i < 16; i++) buffer[i] = data[i];
/* Message Expansion using Number Theoretical Transform similar to FFT */
int expanded[256];
{
#pragma unroll 16
for(int i=0; i<64; i+=4) {
expanded[i+0] = __byte_perm(buffer[i/4],0,0x4440);
expanded[i+1] = __byte_perm(buffer[i/4],0,0x4441);
expanded[i+2] = __byte_perm(buffer[i/4],0,0x4442);
expanded[i+3] = __byte_perm(buffer[i/4],0,0x4443);
}
#pragma unroll 16
for(int i=64; i<128; i+=4) {
expanded[i+0] = 0;
expanded[i+1] = 0;
expanded[i+2] = 0;
expanded[i+3] = 0;
}
FFT_256_halfzero(expanded);
}
/* Compression Function */
SIMD_Compress(A, expanded, buffer);
/* Padding Round with known input (hence the FFT can be precomputed) */
buffer[0] = 512;
#pragma unroll 15
for (int i=1; i < 16; i++) buffer[i] = 0;
SIMD_Compress(A, c_FFT, buffer);
#pragma unroll 16
for (int i=0; i < 16; i++)
hashval[i] = A[i];
}
/***************************************************/
__global__
void x11_simd512_gpu_hash_64_sm2(const uint32_t threads, const uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
const int hashPosition = nounce - startNounce;
uint32_t *Hash = (uint32_t*) &g_hash[8 * hashPosition];
SIMDHash(Hash, Hash);
}
}
#else
__global__ void x11_simd512_gpu_hash_64_sm2(const uint32_t threads, const uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector) {}
#endif /* __CUDA_ARCH__ < 300 */
__host__
static void x11_simd512_cpu_init_sm2(int thr_id)
{
#ifndef DEVICE_DIRECT_CONSTANTS
cudaMemcpyToSymbol( c_IV_512, h_IV_512, sizeof(h_IV_512), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol( c_FFT128_8_16_Twiddle, h_FFT128_8_16_Twiddle, sizeof(h_FFT128_8_16_Twiddle), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol( c_FFT256_2_128_Twiddle, h_FFT256_2_128_Twiddle, sizeof(h_FFT256_2_128_Twiddle), 0, cudaMemcpyHostToDevice);
#endif
}
__host__
static void x11_simd512_cpu_hash_64_sm2(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
const int threadsperblock = 256;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 0;
x11_simd512_gpu_hash_64_sm2<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
MyStreamSynchronize(NULL, order, thr_id);
}