mirror of
https://github.com/GOSTSec/ccminer
synced 2025-01-17 18:20:32 +00:00
276 lines
9.0 KiB
C++
276 lines
9.0 KiB
C++
/*
|
|
* Copyright 2008-2012 NVIDIA Corporation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
|
|
/*! \file reduce.inl
|
|
* \brief Inline file for reduce.h
|
|
*/
|
|
|
|
#include <thrust/detail/config.h>
|
|
#include <thrust/distance.h>
|
|
#include <thrust/iterator/iterator_traits.h>
|
|
#include <thrust/detail/minmax.h>
|
|
#include <thrust/detail/temporary_array.h>
|
|
#include <thrust/system/detail/generic/select_system.h>
|
|
|
|
#include <thrust/system/cuda/detail/runtime_introspection.h>
|
|
#include <thrust/system/cuda/detail/extern_shared_ptr.h>
|
|
#include <thrust/system/cuda/detail/block/reduce.h>
|
|
#include <thrust/system/cuda/detail/detail/launch_closure.h>
|
|
#include <thrust/system/cuda/detail/detail/launch_calculator.h>
|
|
#include <thrust/system/cuda/detail/execution_policy.h>
|
|
|
|
namespace thrust
|
|
{
|
|
namespace system
|
|
{
|
|
namespace cuda
|
|
{
|
|
namespace detail
|
|
{
|
|
|
|
namespace reduce_detail
|
|
{
|
|
|
|
/*
|
|
* Reduce a vector of n elements using binary_op()
|
|
*
|
|
* The order of reduction is not defined, so binary_op() should
|
|
* be a commutative (and associative) operator such as
|
|
* (integer) addition. Since floating point operations
|
|
* do not completely satisfy these criteria, the result is
|
|
* generally not the same as a consecutive reduction of
|
|
* the elements.
|
|
*
|
|
* Uses the same pattern as reduce6() in the CUDA SDK
|
|
*
|
|
*/
|
|
template <typename InputIterator,
|
|
typename Size,
|
|
typename T,
|
|
typename OutputIterator,
|
|
typename BinaryFunction,
|
|
typename Context>
|
|
struct unordered_reduce_closure
|
|
{
|
|
InputIterator input;
|
|
Size n;
|
|
T init;
|
|
OutputIterator output;
|
|
BinaryFunction binary_op;
|
|
unsigned int shared_array_size;
|
|
|
|
typedef Context context_type;
|
|
context_type context;
|
|
|
|
unordered_reduce_closure(InputIterator input, Size n, T init, OutputIterator output, BinaryFunction binary_op, unsigned int shared_array_size, Context context = Context())
|
|
: input(input), n(n), init(init), output(output), binary_op(binary_op), shared_array_size(shared_array_size), context(context) {}
|
|
|
|
__device__ __thrust_forceinline__
|
|
void operator()(void)
|
|
{
|
|
typedef typename thrust::iterator_value<OutputIterator>::type OutputType;
|
|
extern_shared_ptr<OutputType> shared_array;
|
|
|
|
Size grid_size = context.block_dimension() * context.grid_dimension();
|
|
|
|
Size i = context.linear_index();
|
|
|
|
input += i;
|
|
|
|
// compute reduction with all blockDim.x threads
|
|
OutputType sum = thrust::raw_reference_cast(*input);
|
|
|
|
i += grid_size;
|
|
input += grid_size;
|
|
|
|
while (i < n)
|
|
{
|
|
OutputType val = thrust::raw_reference_cast(*input);
|
|
|
|
sum = binary_op(sum, val);
|
|
|
|
i += grid_size;
|
|
input += grid_size;
|
|
}
|
|
|
|
// write first shared_array_size values into shared memory
|
|
if (context.thread_index() < shared_array_size)
|
|
shared_array[context.thread_index()] = sum;
|
|
|
|
// accumulate remaining values (if any) to shared memory in stages
|
|
if (context.block_dimension() > shared_array_size)
|
|
{
|
|
unsigned int lb = shared_array_size;
|
|
unsigned int ub = shared_array_size + lb;
|
|
|
|
while (lb < context.block_dimension())
|
|
{
|
|
context.barrier();
|
|
|
|
if (lb <= context.thread_index() && context.thread_index() < ub)
|
|
{
|
|
OutputType tmp = shared_array[context.thread_index() - lb];
|
|
shared_array[context.thread_index() - lb] = binary_op(tmp, sum);
|
|
}
|
|
|
|
lb += shared_array_size;
|
|
ub += shared_array_size;
|
|
}
|
|
}
|
|
|
|
context.barrier();
|
|
|
|
block::reduce_n(context, shared_array, thrust::min<unsigned int>(context.block_dimension(), shared_array_size), binary_op);
|
|
|
|
if (context.thread_index() == 0)
|
|
{
|
|
OutputType tmp = shared_array[0];
|
|
|
|
if (context.grid_dimension() == 1)
|
|
tmp = binary_op(init, tmp);
|
|
|
|
output += context.block_index();
|
|
*output = tmp;
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
__THRUST_DISABLE_MSVC_POSSIBLE_LOSS_OF_DATA_WARNING_BEGIN
|
|
|
|
template<typename DerivedPolicy,
|
|
typename InputIterator,
|
|
typename OutputType,
|
|
typename BinaryFunction>
|
|
OutputType reduce(execution_policy<DerivedPolicy> &exec,
|
|
InputIterator first,
|
|
InputIterator last,
|
|
OutputType init,
|
|
BinaryFunction binary_op)
|
|
{
|
|
// we're attempting to launch a kernel, assert we're compiling with nvcc
|
|
// ========================================================================
|
|
// X Note to the user: If you've found this line due to a compiler error, X
|
|
// X you need to compile your code using nvcc, rather than g++ or cl.exe X
|
|
// ========================================================================
|
|
THRUST_STATIC_ASSERT( (thrust::detail::depend_on_instantiation<InputIterator, THRUST_DEVICE_COMPILER == THRUST_DEVICE_COMPILER_NVCC>::value) );
|
|
|
|
typedef typename thrust::iterator_difference<InputIterator>::type difference_type;
|
|
|
|
difference_type n = thrust::distance(first,last);
|
|
|
|
if (n == 0)
|
|
return init;
|
|
|
|
typedef thrust::detail::temporary_array<OutputType, DerivedPolicy> OutputArray;
|
|
typedef typename OutputArray::iterator OutputIterator;
|
|
|
|
typedef detail::blocked_thread_array Context;
|
|
typedef unordered_reduce_closure<InputIterator,difference_type,OutputType,OutputIterator,BinaryFunction,Context> Closure;
|
|
|
|
function_attributes_t attributes = detail::closure_attributes<Closure>();
|
|
|
|
// TODO chose this in a more principled manner
|
|
size_t threshold = thrust::max<size_t>(2 * attributes.maxThreadsPerBlock, 1024);
|
|
|
|
device_properties_t properties = device_properties();
|
|
|
|
// launch configuration
|
|
size_t num_blocks;
|
|
size_t block_size;
|
|
size_t array_size;
|
|
size_t smem_bytes;
|
|
|
|
// first level reduction
|
|
if (static_cast<size_t>(n) < threshold)
|
|
{
|
|
num_blocks = 1;
|
|
block_size = thrust::min(static_cast<size_t>(n), static_cast<size_t>(attributes.maxThreadsPerBlock));
|
|
array_size = thrust::min(block_size, (properties.sharedMemPerBlock - attributes.sharedSizeBytes) / sizeof(OutputType));
|
|
smem_bytes = sizeof(OutputType) * array_size;
|
|
}
|
|
else
|
|
{
|
|
detail::launch_calculator<Closure> calculator;
|
|
|
|
thrust::tuple<size_t,size_t,size_t> config = calculator.with_variable_block_size_available_smem();
|
|
|
|
num_blocks = thrust::min(thrust::get<0>(config), static_cast<size_t>(n) / thrust::get<1>(config));
|
|
block_size = thrust::get<1>(config);
|
|
array_size = thrust::min(block_size, thrust::get<2>(config) / sizeof(OutputType));
|
|
smem_bytes = sizeof(OutputType) * array_size;
|
|
}
|
|
|
|
// TODO assert(n <= num_blocks * block_size);
|
|
// TODO if (shared_array_size < 1) throw cuda exception "insufficient shared memory"
|
|
|
|
OutputArray output(exec, num_blocks);
|
|
|
|
Closure closure(first, n, init, output.begin(), binary_op, array_size);
|
|
|
|
//std::cout << "Launching " << num_blocks << " blocks of kernel with " << block_size << " threads and " << smem_bytes << " shared memory per block " << std::endl;
|
|
|
|
detail::launch_closure(closure, num_blocks, block_size, smem_bytes);
|
|
|
|
// second level reduction
|
|
if (num_blocks > 1)
|
|
{
|
|
typedef detail::blocked_thread_array Context;
|
|
typedef unordered_reduce_closure<OutputIterator,difference_type,OutputType,OutputIterator,BinaryFunction,Context> Closure;
|
|
|
|
function_attributes_t attributes = detail::closure_attributes<Closure>();
|
|
|
|
num_blocks = 1;
|
|
block_size = thrust::min(output.size(), static_cast<size_t>(attributes.maxThreadsPerBlock));
|
|
array_size = thrust::min(block_size, (properties.sharedMemPerBlock - attributes.sharedSizeBytes) / sizeof(OutputType));
|
|
smem_bytes = sizeof(OutputType) * array_size;
|
|
|
|
// TODO if (shared_array_size < 1) throw cuda exception "insufficient shared memory"
|
|
|
|
Closure closure(output.begin(), output.size(), init, output.begin(), binary_op, array_size);
|
|
|
|
//std::cout << "Launching " << num_blocks << " blocks of kernel with " << block_size << " threads and " << smem_bytes << " shared memory per block " << std::endl;
|
|
|
|
detail::launch_closure(closure, num_blocks, block_size, smem_bytes);
|
|
}
|
|
|
|
return output[0];
|
|
} // end reduce
|
|
|
|
} // end reduce_detail
|
|
|
|
__THRUST_DISABLE_MSVC_POSSIBLE_LOSS_OF_DATA_WARNING_END
|
|
|
|
template<typename DerivedPolicy,
|
|
typename InputIterator,
|
|
typename OutputType,
|
|
typename BinaryFunction>
|
|
OutputType reduce(execution_policy<DerivedPolicy> &exec,
|
|
InputIterator first,
|
|
InputIterator last,
|
|
OutputType init,
|
|
BinaryFunction binary_op)
|
|
{
|
|
return reduce_detail::reduce(exec, first, last, init, binary_op);
|
|
} // end reduce()
|
|
|
|
} // end namespace detail
|
|
} // end namespace cuda
|
|
} // end namespace system
|
|
} // end namespace thrust
|
|
|