mirror of https://github.com/GOSTSec/ccminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1061 lines
33 KiB
1061 lines
33 KiB
/* |
|
* Copyright 2009 Colin Percival, 2011 ArtForz, 2011-2013 pooler |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
|
* SUCH DAMAGE. |
|
* |
|
* This file was originally written by Colin Percival as part of the Tarsnap |
|
* online backup system. |
|
*/ |
|
|
|
#ifdef WIN32 |
|
#include <ppl.h> |
|
using namespace Concurrency; |
|
#else |
|
#include <omp.h> |
|
#endif |
|
|
|
#include "miner.h" |
|
#include "scrypt/salsa_kernel.h" |
|
#include "scrypt/sha256.h" |
|
|
|
#include <stdlib.h> |
|
#include <stdint.h> |
|
#include <string.h> |
|
|
|
#include <emmintrin.h> |
|
#include <malloc.h> |
|
#include <new> |
|
|
|
// A thin wrapper around the builtin __m128i type |
|
class uint32x4_t |
|
{ |
|
public: |
|
#if WIN32 |
|
void * operator new(size_t size) _THROW1(_STD bad_alloc) { void *p; if ((p = _aligned_malloc(size, 16)) == 0) { static const std::bad_alloc nomem; _RAISE(nomem); } return (p); } |
|
void operator delete(void *p) { _aligned_free(p); } |
|
void * operator new[](size_t size) _THROW1(_STD bad_alloc) { void *p; if ((p = _aligned_malloc(size, 16)) == 0) { static const std::bad_alloc nomem; _RAISE(nomem); } return (p); } |
|
void operator delete[](void *p) { _aligned_free(p); } |
|
#else |
|
void * operator new(size_t size) throw(std::bad_alloc) { void *p; if (posix_memalign(&p, 16, size) < 0) { static const std::bad_alloc nomem; throw nomem; } return (p); } |
|
void operator delete(void *p) { free(p); } |
|
void * operator new[](size_t size) throw(std::bad_alloc) { void *p; if (posix_memalign(&p, 16, size) < 0) { static const std::bad_alloc nomem; throw nomem; } return (p); } |
|
void operator delete[](void *p) { free(p); } |
|
#endif |
|
uint32x4_t() { }; |
|
uint32x4_t(const __m128i init) { val = init; } |
|
uint32x4_t(const uint32_t init) { val = _mm_set1_epi32((int)init); } |
|
uint32x4_t(const uint32_t a, const uint32_t b, const uint32_t c, const uint32_t d) { val = _mm_setr_epi32((int)a,(int)b,(int)c,(int)d); } |
|
inline operator const __m128i() const { return val; } |
|
inline const uint32x4_t operator+(const uint32x4_t &other) const { return _mm_add_epi32(val, other); } |
|
inline const uint32x4_t operator+(const uint32_t other) const { return _mm_add_epi32(val, _mm_set1_epi32((int)other)); } |
|
inline uint32x4_t& operator+=(const uint32x4_t other) { val = _mm_add_epi32(val, other); return *this; } |
|
inline uint32x4_t& operator+=(const uint32_t other) { val = _mm_add_epi32(val, _mm_set1_epi32((int)other)); return *this; } |
|
inline const uint32x4_t operator&(const uint32_t other) const { return _mm_and_si128(val, _mm_set1_epi32((int)other)); } |
|
inline const uint32x4_t operator&(const uint32x4_t &other) const { return _mm_and_si128(val, other); } |
|
inline const uint32x4_t operator|(const uint32x4_t &other) const { return _mm_or_si128(val, other); } |
|
inline const uint32x4_t operator^(const uint32x4_t &other) const { return _mm_xor_si128(val, other); } |
|
inline const uint32x4_t operator<<(const int num) const { return _mm_slli_epi32(val, num); } |
|
inline const uint32x4_t operator>>(const int num) const { return _mm_srli_epi32(val, num); } |
|
inline const uint32_t operator[](const int num) const { return ((uint32_t*)&val)[num]; } |
|
protected: |
|
__m128i val; |
|
}; |
|
|
|
// non-member overload |
|
inline const uint32x4_t operator+(const uint32_t left, const uint32x4_t &right) { return _mm_add_epi32(_mm_set1_epi32((int)left), right); } |
|
|
|
|
|
// |
|
// Code taken from sha2.cpp and vectorized, with minimal changes where required |
|
// Not all subroutines are actually used. |
|
// |
|
|
|
#define bswap_32x4(x) ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) \ |
|
| (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu)) |
|
|
|
static __inline uint32x4_t swab32x4(const uint32x4_t &v) |
|
{ |
|
return bswap_32x4(v); |
|
} |
|
|
|
static const uint32_t sha256_h[8] = { |
|
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, |
|
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 |
|
}; |
|
|
|
static const uint32_t sha256_k[64] = { |
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, |
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, |
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, |
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, |
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, |
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
|
}; |
|
|
|
void sha256_initx4(uint32x4_t *statex4) |
|
{ |
|
for (int i=0; i<8; ++i) |
|
statex4[i] = sha256_h[i]; |
|
} |
|
|
|
/* Elementary functions used by SHA256 */ |
|
#define Ch(x, y, z) ((x & (y ^ z)) ^ z) |
|
#define Maj(x, y, z) ((x & (y | z)) | (y & z)) |
|
#define ROTR(x, n) ((x >> n) | (x << (32 - n))) |
|
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) |
|
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) |
|
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3)) |
|
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10)) |
|
|
|
/* SHA256 round function */ |
|
#define RND(a, b, c, d, e, f, g, h, k) \ |
|
do { \ |
|
t0 = h + S1(e) + Ch(e, f, g) + k; \ |
|
t1 = S0(a) + Maj(a, b, c); \ |
|
d += t0; \ |
|
h = t0 + t1; \ |
|
} while (0) |
|
|
|
/* Adjusted round function for rotating state */ |
|
#define RNDr(S, W, i) \ |
|
RND(S[(64 - i) % 8], S[(65 - i) % 8], \ |
|
S[(66 - i) % 8], S[(67 - i) % 8], \ |
|
S[(68 - i) % 8], S[(69 - i) % 8], \ |
|
S[(70 - i) % 8], S[(71 - i) % 8], \ |
|
W[i] + sha256_k[i]) |
|
|
|
/* |
|
* SHA256 block compression function. The 256-bit state is transformed via |
|
* the 512-bit input block to produce a new state. |
|
*/ |
|
void sha256_transformx4(uint32x4_t *state, const uint32x4_t *block, int swap) |
|
{ |
|
uint32x4_t W[64]; |
|
uint32x4_t S[8]; |
|
uint32x4_t t0, t1; |
|
int i; |
|
|
|
/* 1. Prepare message schedule W. */ |
|
if (swap) { |
|
for (i = 0; i < 16; i++) |
|
W[i] = swab32x4(block[i]); |
|
} else |
|
memcpy(W, block, 4*64); |
|
for (i = 16; i < 64; i += 2) { |
|
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; |
|
W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; |
|
} |
|
|
|
/* 2. Initialize working variables. */ |
|
memcpy(S, state, 4*32); |
|
|
|
/* 3. Mix. */ |
|
RNDr(S, W, 0); |
|
RNDr(S, W, 1); |
|
RNDr(S, W, 2); |
|
RNDr(S, W, 3); |
|
RNDr(S, W, 4); |
|
RNDr(S, W, 5); |
|
RNDr(S, W, 6); |
|
RNDr(S, W, 7); |
|
RNDr(S, W, 8); |
|
RNDr(S, W, 9); |
|
RNDr(S, W, 10); |
|
RNDr(S, W, 11); |
|
RNDr(S, W, 12); |
|
RNDr(S, W, 13); |
|
RNDr(S, W, 14); |
|
RNDr(S, W, 15); |
|
RNDr(S, W, 16); |
|
RNDr(S, W, 17); |
|
RNDr(S, W, 18); |
|
RNDr(S, W, 19); |
|
RNDr(S, W, 20); |
|
RNDr(S, W, 21); |
|
RNDr(S, W, 22); |
|
RNDr(S, W, 23); |
|
RNDr(S, W, 24); |
|
RNDr(S, W, 25); |
|
RNDr(S, W, 26); |
|
RNDr(S, W, 27); |
|
RNDr(S, W, 28); |
|
RNDr(S, W, 29); |
|
RNDr(S, W, 30); |
|
RNDr(S, W, 31); |
|
RNDr(S, W, 32); |
|
RNDr(S, W, 33); |
|
RNDr(S, W, 34); |
|
RNDr(S, W, 35); |
|
RNDr(S, W, 36); |
|
RNDr(S, W, 37); |
|
RNDr(S, W, 38); |
|
RNDr(S, W, 39); |
|
RNDr(S, W, 40); |
|
RNDr(S, W, 41); |
|
RNDr(S, W, 42); |
|
RNDr(S, W, 43); |
|
RNDr(S, W, 44); |
|
RNDr(S, W, 45); |
|
RNDr(S, W, 46); |
|
RNDr(S, W, 47); |
|
RNDr(S, W, 48); |
|
RNDr(S, W, 49); |
|
RNDr(S, W, 50); |
|
RNDr(S, W, 51); |
|
RNDr(S, W, 52); |
|
RNDr(S, W, 53); |
|
RNDr(S, W, 54); |
|
RNDr(S, W, 55); |
|
RNDr(S, W, 56); |
|
RNDr(S, W, 57); |
|
RNDr(S, W, 58); |
|
RNDr(S, W, 59); |
|
RNDr(S, W, 60); |
|
RNDr(S, W, 61); |
|
RNDr(S, W, 62); |
|
RNDr(S, W, 63); |
|
|
|
/* 4. Mix local working variables into global state */ |
|
for (i = 0; i < 8; i++) |
|
state[i] += S[i]; |
|
} |
|
|
|
static const uint32_t sha256d_hash1[16] = { |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x80000000, 0x00000000, 0x00000000, 0x00000000, |
|
0x00000000, 0x00000000, 0x00000000, 0x00000100 |
|
}; |
|
|
|
static void sha256dx4(uint32x4_t *hash, uint32x4_t *data) |
|
{ |
|
uint32x4_t S[16]; |
|
|
|
sha256_initx4(S); |
|
sha256_transformx4(S, data, 0); |
|
sha256_transformx4(S, data + 16, 0); |
|
for (int i=8; i<16; ++i) |
|
S[i] = sha256d_hash1[i]; |
|
sha256_initx4(hash); |
|
sha256_transformx4(hash, S, 0); |
|
} |
|
|
|
static inline void sha256d_preextendx4(uint32x4_t *W) |
|
{ |
|
W[16] = s1(W[14]) + W[ 9] + s0(W[ 1]) + W[ 0]; |
|
W[17] = s1(W[15]) + W[10] + s0(W[ 2]) + W[ 1]; |
|
W[18] = s1(W[16]) + W[11] + W[ 2]; |
|
W[19] = s1(W[17]) + W[12] + s0(W[ 4]); |
|
W[20] = W[13] + s0(W[ 5]) + W[ 4]; |
|
W[21] = W[14] + s0(W[ 6]) + W[ 5]; |
|
W[22] = W[15] + s0(W[ 7]) + W[ 6]; |
|
W[23] = W[16] + s0(W[ 8]) + W[ 7]; |
|
W[24] = W[17] + s0(W[ 9]) + W[ 8]; |
|
W[25] = s0(W[10]) + W[ 9]; |
|
W[26] = s0(W[11]) + W[10]; |
|
W[27] = s0(W[12]) + W[11]; |
|
W[28] = s0(W[13]) + W[12]; |
|
W[29] = s0(W[14]) + W[13]; |
|
W[30] = s0(W[15]) + W[14]; |
|
W[31] = s0(W[16]) + W[15]; |
|
} |
|
|
|
static inline void sha256d_prehashx4(uint32x4_t *S, const uint32x4_t *W) |
|
{ |
|
uint32x4_t t0, t1; |
|
RNDr(S, W, 0); |
|
RNDr(S, W, 1); |
|
RNDr(S, W, 2); |
|
} |
|
|
|
static inline void sha256d_msx4(uint32x4_t *hash, uint32x4_t *W, |
|
const uint32_t *midstate, const uint32_t *prehash) |
|
{ |
|
uint32x4_t S[64]; |
|
uint32x4_t t0, t1; |
|
int i; |
|
|
|
S[18] = W[18]; |
|
S[19] = W[19]; |
|
S[20] = W[20]; |
|
S[22] = W[22]; |
|
S[23] = W[23]; |
|
S[24] = W[24]; |
|
S[30] = W[30]; |
|
S[31] = W[31]; |
|
|
|
W[18] += s0(W[3]); |
|
W[19] += W[3]; |
|
W[20] += s1(W[18]); |
|
W[21] = s1(W[19]); |
|
W[22] += s1(W[20]); |
|
W[23] += s1(W[21]); |
|
W[24] += s1(W[22]); |
|
W[25] = s1(W[23]) + W[18]; |
|
W[26] = s1(W[24]) + W[19]; |
|
W[27] = s1(W[25]) + W[20]; |
|
W[28] = s1(W[26]) + W[21]; |
|
W[29] = s1(W[27]) + W[22]; |
|
W[30] += s1(W[28]) + W[23]; |
|
W[31] += s1(W[29]) + W[24]; |
|
for (i = 32; i < 64; i += 2) { |
|
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; |
|
W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; |
|
} |
|
|
|
for (i=0; i<8; ++i) |
|
S[i] = prehash[i]; |
|
|
|
RNDr(S, W, 3); |
|
RNDr(S, W, 4); |
|
RNDr(S, W, 5); |
|
RNDr(S, W, 6); |
|
RNDr(S, W, 7); |
|
RNDr(S, W, 8); |
|
RNDr(S, W, 9); |
|
RNDr(S, W, 10); |
|
RNDr(S, W, 11); |
|
RNDr(S, W, 12); |
|
RNDr(S, W, 13); |
|
RNDr(S, W, 14); |
|
RNDr(S, W, 15); |
|
RNDr(S, W, 16); |
|
RNDr(S, W, 17); |
|
RNDr(S, W, 18); |
|
RNDr(S, W, 19); |
|
RNDr(S, W, 20); |
|
RNDr(S, W, 21); |
|
RNDr(S, W, 22); |
|
RNDr(S, W, 23); |
|
RNDr(S, W, 24); |
|
RNDr(S, W, 25); |
|
RNDr(S, W, 26); |
|
RNDr(S, W, 27); |
|
RNDr(S, W, 28); |
|
RNDr(S, W, 29); |
|
RNDr(S, W, 30); |
|
RNDr(S, W, 31); |
|
RNDr(S, W, 32); |
|
RNDr(S, W, 33); |
|
RNDr(S, W, 34); |
|
RNDr(S, W, 35); |
|
RNDr(S, W, 36); |
|
RNDr(S, W, 37); |
|
RNDr(S, W, 38); |
|
RNDr(S, W, 39); |
|
RNDr(S, W, 40); |
|
RNDr(S, W, 41); |
|
RNDr(S, W, 42); |
|
RNDr(S, W, 43); |
|
RNDr(S, W, 44); |
|
RNDr(S, W, 45); |
|
RNDr(S, W, 46); |
|
RNDr(S, W, 47); |
|
RNDr(S, W, 48); |
|
RNDr(S, W, 49); |
|
RNDr(S, W, 50); |
|
RNDr(S, W, 51); |
|
RNDr(S, W, 52); |
|
RNDr(S, W, 53); |
|
RNDr(S, W, 54); |
|
RNDr(S, W, 55); |
|
RNDr(S, W, 56); |
|
RNDr(S, W, 57); |
|
RNDr(S, W, 58); |
|
RNDr(S, W, 59); |
|
RNDr(S, W, 60); |
|
RNDr(S, W, 61); |
|
RNDr(S, W, 62); |
|
RNDr(S, W, 63); |
|
|
|
for (i = 0; i < 8; i++) |
|
S[i] += midstate[i]; |
|
|
|
W[18] = S[18]; |
|
W[19] = S[19]; |
|
W[20] = S[20]; |
|
W[22] = S[22]; |
|
W[23] = S[23]; |
|
W[24] = S[24]; |
|
W[30] = S[30]; |
|
W[31] = S[31]; |
|
|
|
for (i=8; i<16; ++i) |
|
S[i] = sha256d_hash1[i]; |
|
S[16] = s1(sha256d_hash1[14]) + sha256d_hash1[ 9] + s0(S[ 1]) + S[ 0]; |
|
S[17] = s1(sha256d_hash1[15]) + sha256d_hash1[10] + s0(S[ 2]) + S[ 1]; |
|
S[18] = s1(S[16]) + sha256d_hash1[11] + s0(S[ 3]) + S[ 2]; |
|
S[19] = s1(S[17]) + sha256d_hash1[12] + s0(S[ 4]) + S[ 3]; |
|
S[20] = s1(S[18]) + sha256d_hash1[13] + s0(S[ 5]) + S[ 4]; |
|
S[21] = s1(S[19]) + sha256d_hash1[14] + s0(S[ 6]) + S[ 5]; |
|
S[22] = s1(S[20]) + sha256d_hash1[15] + s0(S[ 7]) + S[ 6]; |
|
S[23] = s1(S[21]) + S[16] + s0(sha256d_hash1[ 8]) + S[ 7]; |
|
S[24] = s1(S[22]) + S[17] + s0(sha256d_hash1[ 9]) + sha256d_hash1[ 8]; |
|
S[25] = s1(S[23]) + S[18] + s0(sha256d_hash1[10]) + sha256d_hash1[ 9]; |
|
S[26] = s1(S[24]) + S[19] + s0(sha256d_hash1[11]) + sha256d_hash1[10]; |
|
S[27] = s1(S[25]) + S[20] + s0(sha256d_hash1[12]) + sha256d_hash1[11]; |
|
S[28] = s1(S[26]) + S[21] + s0(sha256d_hash1[13]) + sha256d_hash1[12]; |
|
S[29] = s1(S[27]) + S[22] + s0(sha256d_hash1[14]) + sha256d_hash1[13]; |
|
S[30] = s1(S[28]) + S[23] + s0(sha256d_hash1[15]) + sha256d_hash1[14]; |
|
S[31] = s1(S[29]) + S[24] + s0(S[16]) + sha256d_hash1[15]; |
|
for (i = 32; i < 60; i += 2) { |
|
S[i] = s1(S[i - 2]) + S[i - 7] + s0(S[i - 15]) + S[i - 16]; |
|
S[i+1] = s1(S[i - 1]) + S[i - 6] + s0(S[i - 14]) + S[i - 15]; |
|
} |
|
S[60] = s1(S[58]) + S[53] + s0(S[45]) + S[44]; |
|
|
|
sha256_initx4(hash); |
|
|
|
RNDr(hash, S, 0); |
|
RNDr(hash, S, 1); |
|
RNDr(hash, S, 2); |
|
RNDr(hash, S, 3); |
|
RNDr(hash, S, 4); |
|
RNDr(hash, S, 5); |
|
RNDr(hash, S, 6); |
|
RNDr(hash, S, 7); |
|
RNDr(hash, S, 8); |
|
RNDr(hash, S, 9); |
|
RNDr(hash, S, 10); |
|
RNDr(hash, S, 11); |
|
RNDr(hash, S, 12); |
|
RNDr(hash, S, 13); |
|
RNDr(hash, S, 14); |
|
RNDr(hash, S, 15); |
|
RNDr(hash, S, 16); |
|
RNDr(hash, S, 17); |
|
RNDr(hash, S, 18); |
|
RNDr(hash, S, 19); |
|
RNDr(hash, S, 20); |
|
RNDr(hash, S, 21); |
|
RNDr(hash, S, 22); |
|
RNDr(hash, S, 23); |
|
RNDr(hash, S, 24); |
|
RNDr(hash, S, 25); |
|
RNDr(hash, S, 26); |
|
RNDr(hash, S, 27); |
|
RNDr(hash, S, 28); |
|
RNDr(hash, S, 29); |
|
RNDr(hash, S, 30); |
|
RNDr(hash, S, 31); |
|
RNDr(hash, S, 32); |
|
RNDr(hash, S, 33); |
|
RNDr(hash, S, 34); |
|
RNDr(hash, S, 35); |
|
RNDr(hash, S, 36); |
|
RNDr(hash, S, 37); |
|
RNDr(hash, S, 38); |
|
RNDr(hash, S, 39); |
|
RNDr(hash, S, 40); |
|
RNDr(hash, S, 41); |
|
RNDr(hash, S, 42); |
|
RNDr(hash, S, 43); |
|
RNDr(hash, S, 44); |
|
RNDr(hash, S, 45); |
|
RNDr(hash, S, 46); |
|
RNDr(hash, S, 47); |
|
RNDr(hash, S, 48); |
|
RNDr(hash, S, 49); |
|
RNDr(hash, S, 50); |
|
RNDr(hash, S, 51); |
|
RNDr(hash, S, 52); |
|
RNDr(hash, S, 53); |
|
RNDr(hash, S, 54); |
|
RNDr(hash, S, 55); |
|
RNDr(hash, S, 56); |
|
|
|
hash[2] += hash[6] + S1(hash[3]) + Ch(hash[3], hash[4], hash[5]) |
|
+ S[57] + sha256_k[57]; |
|
hash[1] += hash[5] + S1(hash[2]) + Ch(hash[2], hash[3], hash[4]) |
|
+ S[58] + sha256_k[58]; |
|
hash[0] += hash[4] + S1(hash[1]) + Ch(hash[1], hash[2], hash[3]) |
|
+ S[59] + sha256_k[59]; |
|
hash[7] += hash[3] + S1(hash[0]) + Ch(hash[0], hash[1], hash[2]) |
|
+ S[60] + sha256_k[60] |
|
+ sha256_h[7]; |
|
} |
|
|
|
// |
|
// Code taken from original scrypt.cpp and vectorized with minimal changes. |
|
// |
|
|
|
static const uint32x4_t keypadx4[12] = { |
|
0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000280 |
|
}; |
|
static const uint32x4_t innerpadx4[11] = { |
|
0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x000004a0 |
|
}; |
|
static const uint32x4_t outerpadx4[8] = { |
|
0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300 |
|
}; |
|
static const uint32x4_t finalblkx4[16] = { |
|
0x00000001, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000620 |
|
}; |
|
|
|
static inline void HMAC_SHA256_80_initx4(const uint32x4_t *key, |
|
uint32x4_t *tstate, uint32x4_t *ostate) |
|
{ |
|
uint32x4_t ihash[8]; |
|
uint32x4_t pad[16]; |
|
int i; |
|
|
|
/* tstate is assumed to contain the midstate of key */ |
|
memcpy(pad, key + 16, 4*16); |
|
memcpy(pad + 4, keypadx4, 4*48); |
|
sha256_transformx4(tstate, pad, 0); |
|
memcpy(ihash, tstate, 4*32); |
|
|
|
sha256_initx4(ostate); |
|
for (i = 0; i < 8; i++) |
|
pad[i] = ihash[i] ^ 0x5c5c5c5c; |
|
for (; i < 16; i++) |
|
pad[i] = 0x5c5c5c5c; |
|
sha256_transformx4(ostate, pad, 0); |
|
|
|
sha256_initx4(tstate); |
|
for (i = 0; i < 8; i++) |
|
pad[i] = ihash[i] ^ 0x36363636; |
|
for (; i < 16; i++) |
|
pad[i] = 0x36363636; |
|
sha256_transformx4(tstate, pad, 0); |
|
} |
|
|
|
static inline void PBKDF2_SHA256_80_128x4(const uint32x4_t *tstate, |
|
const uint32x4_t *ostate, const uint32x4_t *salt, uint32x4_t *output) |
|
{ |
|
uint32x4_t istate[8], ostate2[8]; |
|
uint32x4_t ibuf[16], obuf[16]; |
|
int i, j; |
|
|
|
memcpy(istate, tstate, 4*32); |
|
sha256_transformx4(istate, salt, 0); |
|
|
|
memcpy(ibuf, salt + 16, 4*16); |
|
memcpy(ibuf + 5, innerpadx4, 4*44); |
|
memcpy(obuf + 8, outerpadx4, 4*32); |
|
|
|
for (i = 0; i < 4; i++) { |
|
memcpy(obuf, istate, 4*32); |
|
ibuf[4] = i + 1; |
|
sha256_transformx4(obuf, ibuf, 0); |
|
|
|
memcpy(ostate2, ostate, 4*32); |
|
sha256_transformx4(ostate2, obuf, 0); |
|
for (j = 0; j < 8; j++) |
|
output[8 * i + j] = swab32x4(ostate2[j]); |
|
} |
|
} |
|
|
|
static inline void PBKDF2_SHA256_128_32x4(uint32x4_t *tstate, uint32x4_t *ostate, |
|
const uint32x4_t *salt, uint32x4_t *output) |
|
{ |
|
uint32x4_t buf[16]; |
|
int i; |
|
|
|
sha256_transformx4(tstate, salt, 1); |
|
sha256_transformx4(tstate, salt + 16, 1); |
|
sha256_transformx4(tstate, finalblkx4, 0); |
|
memcpy(buf, tstate, 4*32); |
|
memcpy(buf + 8, outerpadx4, 4*32); |
|
|
|
sha256_transformx4(ostate, buf, 0); |
|
for (i = 0; i < 8; i++) |
|
output[i] = swab32x4(ostate[i]); |
|
} |
|
|
|
|
|
// |
|
// Original scrypt.cpp HMAC SHA256 functions |
|
// |
|
|
|
static const uint32_t keypad[12] = { |
|
0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000280 |
|
}; |
|
static const uint32_t innerpad[11] = { |
|
0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x000004a0 |
|
}; |
|
static const uint32_t outerpad[8] = { |
|
0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300 |
|
}; |
|
static const uint32_t finalblk[16] = { |
|
0x00000001, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000620 |
|
}; |
|
|
|
static inline void HMAC_SHA256_80_init(const uint32_t *key, |
|
uint32_t *tstate, uint32_t *ostate) |
|
{ |
|
uint32_t ihash[8]; |
|
uint32_t pad[16]; |
|
int i; |
|
|
|
/* tstate is assumed to contain the midstate of key */ |
|
memcpy(pad, key + 16, 16); |
|
memcpy(pad + 4, keypad, 48); |
|
sha256_transform(tstate, pad, 0); |
|
memcpy(ihash, tstate, 32); |
|
|
|
sha256_init(ostate); |
|
for (i = 0; i < 8; i++) |
|
pad[i] = ihash[i] ^ 0x5c5c5c5c; |
|
for (; i < 16; i++) |
|
pad[i] = 0x5c5c5c5c; |
|
sha256_transform(ostate, pad, 0); |
|
|
|
sha256_init(tstate); |
|
for (i = 0; i < 8; i++) |
|
pad[i] = ihash[i] ^ 0x36363636; |
|
for (; i < 16; i++) |
|
pad[i] = 0x36363636; |
|
sha256_transform(tstate, pad, 0); |
|
} |
|
|
|
static inline void PBKDF2_SHA256_80_128(const uint32_t *tstate, |
|
const uint32_t *ostate, const uint32_t *salt, uint32_t *output) |
|
{ |
|
uint32_t istate[8], ostate2[8]; |
|
uint32_t ibuf[16], obuf[16]; |
|
int i, j; |
|
|
|
memcpy(istate, tstate, 32); |
|
sha256_transform(istate, salt, 0); |
|
|
|
memcpy(ibuf, salt + 16, 16); |
|
memcpy(ibuf + 5, innerpad, 44); |
|
memcpy(obuf + 8, outerpad, 32); |
|
|
|
for (i = 0; i < 4; i++) { |
|
memcpy(obuf, istate, 32); |
|
ibuf[4] = i + 1; |
|
sha256_transform(obuf, ibuf, 0); |
|
|
|
memcpy(ostate2, ostate, 32); |
|
sha256_transform(ostate2, obuf, 0); |
|
for (j = 0; j < 8; j++) |
|
output[8 * i + j] = swab32(ostate2[j]); |
|
} |
|
} |
|
|
|
static inline void PBKDF2_SHA256_128_32(uint32_t *tstate, uint32_t *ostate, |
|
const uint32_t *salt, uint32_t *output) |
|
{ |
|
uint32_t buf[16]; |
|
|
|
sha256_transform(tstate, salt, 1); |
|
sha256_transform(tstate, salt + 16, 1); |
|
sha256_transform(tstate, finalblk, 0); |
|
memcpy(buf, tstate, 32); |
|
memcpy(buf + 8, outerpad, 32); |
|
|
|
sha256_transform(ostate, buf, 0); |
|
for (int i = 0; i < 8; i++) |
|
output[i] = swab32(ostate[i]); |
|
} |
|
|
|
static int lastFactor = 0; |
|
|
|
static void computeGold(uint32_t* const input, uint32_t *reference, uchar *scratchpad); |
|
|
|
// Scrypt proof of work algorithm |
|
// using SSE2 vectorized HMAC SHA256 on CPU and |
|
// a salsa core implementation on GPU with CUDA |
|
// |
|
int scanhash_scrypt(int thr_id, uint32_t *pdata, const uint32_t *ptarget, unsigned char *scratchbuf, |
|
uint32_t max_nonce, unsigned long *hashes_done, struct timeval *tv_start, struct timeval *tv_end) |
|
{ |
|
int result = 0; |
|
int throughput = cuda_throughput(thr_id); |
|
|
|
if(throughput == 0) |
|
return -1; |
|
|
|
gettimeofday(tv_start, NULL); |
|
|
|
uint32_t n = pdata[19]; |
|
const uint32_t Htarg = ptarget[7]; |
|
|
|
// no default set with --cputest |
|
if (opt_nfactor == 0) opt_nfactor = 9; |
|
uint32_t N = (1UL<<(opt_nfactor+1)); |
|
uint32_t *scratch = new uint32_t[N*32]; // scratchbuffer for CPU based validation |
|
|
|
uint32_t nonce[2]; |
|
uint32_t* hash[2] = { cuda_hashbuffer(thr_id,0), cuda_hashbuffer(thr_id,1) }; |
|
uint32_t* X[2] = { cuda_transferbuffer(thr_id,0), cuda_transferbuffer(thr_id,1) }; |
|
|
|
bool sha_on_cpu = (parallel < 2); |
|
bool sha_multithreaded = (parallel == 1); |
|
uint32x4_t* datax4[2] = { sha_on_cpu ? new uint32x4_t[throughput/4 * 20] : NULL, sha_on_cpu ? new uint32x4_t[throughput/4 * 20] : NULL }; |
|
uint32x4_t* hashx4[2] = { sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL, sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL }; |
|
uint32x4_t* tstatex4[2] = { sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL, sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL }; |
|
uint32x4_t* ostatex4[2] = { sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL, sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL }; |
|
uint32x4_t* Xx4[2] = { sha_on_cpu ? new uint32x4_t[throughput/4 * 32] : NULL, sha_on_cpu ? new uint32x4_t[throughput/4 * 32] : NULL }; |
|
|
|
// log n-factor |
|
if (!opt_quiet && lastFactor != opt_nfactor) { |
|
applog(LOG_WARNING, "scrypt factor set to %d (%u)", opt_nfactor, N); |
|
lastFactor = opt_nfactor; |
|
} |
|
|
|
uint32_t _ALIGN(64) midstate[8]; |
|
sha256_init(midstate); |
|
sha256_transform(midstate, pdata, 0); |
|
|
|
if (sha_on_cpu) { |
|
for (int i = 0; i < throughput/4; ++i) { |
|
for (int j = 0; j < 20; j++) { |
|
datax4[0][20*i+j] = uint32x4_t(pdata[j]); |
|
datax4[1][20*i+j] = uint32x4_t(pdata[j]); |
|
} |
|
} |
|
} |
|
else prepare_sha256(thr_id, pdata, midstate); |
|
|
|
int cur = 1, nxt = 0; |
|
int iteration = 0; |
|
int num_shares = (4*opt_n_threads) || 1; // opt_n_threads can be 0 with --cputest |
|
int share_workload = ((((throughput + num_shares-1) / num_shares) + 3) / 4) * 4; |
|
|
|
do { |
|
nonce[nxt] = n; |
|
|
|
if (sha_on_cpu) |
|
{ |
|
for (int i = 0; i < throughput/4; i++) { |
|
datax4[nxt][i * 20 + 19] = uint32x4_t(n+0, n+1, n+2, n+3); |
|
n += 4; |
|
} |
|
if (sha_multithreaded) |
|
{ |
|
#ifdef WIN32 |
|
parallel_for (0, num_shares, [&](int share) { |
|
for (int k = (share_workload*share)/4; k < (share_workload*(share+1))/4 && k < throughput/4; k++) { |
|
for (int l = 0; l < 8; l++) |
|
tstatex4[nxt][k * 8 + l] = uint32x4_t(midstate[l]); |
|
HMAC_SHA256_80_initx4(&datax4[nxt][k * 20], &tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8]); |
|
PBKDF2_SHA256_80_128x4(&tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8], &datax4[nxt][k * 20], &Xx4[nxt][k * 32]); |
|
} |
|
} ); |
|
#else |
|
#pragma omp parallel for |
|
for (int share = 0; share < num_shares; share++) { |
|
for (int k = (share_workload*share)/4; k < (share_workload*(share+1))/4 && k < throughput/4; k++) { |
|
for (int l = 0; l < 8; l++) |
|
tstatex4[nxt][k * 8 + l] = uint32x4_t(midstate[l]); |
|
HMAC_SHA256_80_initx4(&datax4[nxt][k * 20], &tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8]); |
|
PBKDF2_SHA256_80_128x4(&tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8], &datax4[nxt][k * 20], &Xx4[nxt][k * 32]); |
|
} |
|
} |
|
#endif |
|
} |
|
else /* sha_multithreaded */ |
|
{ |
|
for (int k = 0; k < throughput/4; k++) { |
|
for (int l = 0; l < 8; l++) |
|
tstatex4[nxt][k * 8 + l] = uint32x4_t(midstate[l]); |
|
HMAC_SHA256_80_initx4(&datax4[nxt][k * 20], &tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8]); |
|
PBKDF2_SHA256_80_128x4(&tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8], &datax4[nxt][k * 20], &Xx4[nxt][k * 32]); |
|
} |
|
} |
|
|
|
for (int i = 0; i < throughput/4; i++) { |
|
for (int j = 0; j < 32; j++) { |
|
uint32x4_t &t = Xx4[nxt][i * 32 + j]; |
|
X[nxt][(4*i+0)*32+j] = t[0]; X[nxt][(4*i+1)*32+j] = t[1]; |
|
X[nxt][(4*i+2)*32+j] = t[2]; X[nxt][(4*i+3)*32+j] = t[3]; |
|
} |
|
} |
|
|
|
cuda_scrypt_serialize(thr_id, nxt); |
|
cuda_scrypt_HtoD(thr_id, X[nxt], nxt); |
|
|
|
cuda_scrypt_core(thr_id, nxt, N); |
|
cuda_scrypt_done(thr_id, nxt); |
|
|
|
cuda_scrypt_DtoH(thr_id, X[nxt], nxt, false); |
|
cuda_scrypt_flush(thr_id, nxt); |
|
|
|
if(!cuda_scrypt_sync(thr_id, cur)) |
|
{ |
|
result = -1; |
|
break; |
|
} |
|
|
|
for (int i = 0; i < throughput/4; i++) { |
|
for (int j = 0; j < 32; j++) { |
|
Xx4[cur][i * 32 + j] = uint32x4_t( |
|
X[cur][(4*i+0)*32+j], X[cur][(4*i+1)*32+j], |
|
X[cur][(4*i+2)*32+j], X[cur][(4*i+3)*32+j] |
|
); |
|
} |
|
} |
|
|
|
if (sha_multithreaded) |
|
{ |
|
#ifdef WIN32 |
|
parallel_for (0, num_shares, [&](int share) { |
|
for (int k = (share_workload*share)/4; k < (share_workload*(share+1))/4 && k < throughput/4; k++) { |
|
PBKDF2_SHA256_128_32x4(&tstatex4[cur][k * 8], &ostatex4[cur][k * 8], &Xx4[cur][k * 32], &hashx4[cur][k * 8]); |
|
} |
|
} ); |
|
#else |
|
#pragma omp parallel for |
|
for (int share = 0; share < num_shares; share++) { |
|
for (int k = (share_workload*share)/4; k < (share_workload*(share+1))/4 && k < throughput/4; k++) { |
|
PBKDF2_SHA256_128_32x4(&tstatex4[cur][k * 8], &ostatex4[cur][k * 8], &Xx4[cur][k * 32], &hashx4[cur][k * 8]); |
|
} |
|
} |
|
#endif |
|
} else { |
|
|
|
for (int k = 0; k < throughput/4; k++) { |
|
PBKDF2_SHA256_128_32x4(&tstatex4[cur][k * 8], &ostatex4[cur][k * 8], &Xx4[cur][k * 32], &hashx4[cur][k * 8]); |
|
} |
|
} |
|
|
|
for (int i = 0; i < throughput/4; i++) { |
|
for (int j = 0; j < 8; j++) { |
|
uint32x4_t &t = hashx4[cur][i * 8 + j]; |
|
hash[cur][(4*i+0)*8+j] = t[0]; hash[cur][(4*i+1)*8+j] = t[1]; |
|
hash[cur][(4*i+2)*8+j] = t[2]; hash[cur][(4*i+3)*8+j] = t[3]; |
|
} |
|
} |
|
} |
|
else /* sha_on_cpu */ |
|
{ |
|
n += throughput; |
|
|
|
cuda_scrypt_serialize(thr_id, nxt); |
|
pre_sha256(thr_id, nxt, nonce[nxt], throughput); |
|
|
|
cuda_scrypt_core(thr_id, nxt, N); |
|
cuda_scrypt_flush(thr_id, nxt); // required here ? |
|
|
|
post_sha256(thr_id, nxt, throughput); |
|
cuda_scrypt_done(thr_id, nxt); |
|
|
|
cuda_scrypt_DtoH(thr_id, hash[nxt], nxt, true); |
|
cuda_scrypt_flush(thr_id, nxt); // required here ? |
|
|
|
if (!cuda_scrypt_sync(thr_id, cur)) { |
|
printf("error\n"); |
|
result = -1; |
|
break; |
|
} |
|
} |
|
|
|
if (iteration > 0 || opt_n_threads == 0) |
|
{ |
|
for (int i = 0; i < throughput; i++) |
|
{ |
|
if (hash[cur][i * 8 + 7] <= Htarg && fulltest(hash[cur] + i * 8, ptarget)) |
|
{ |
|
// CPU based validation to rule out GPU errors (scalar CPU code) |
|
uint32_t _ALIGN(64) inp[32], ref[32], tstate[8], ostate[8], refhash[8], ldata[20]; |
|
|
|
memcpy(ldata, pdata, 80); ldata[19] = nonce[cur] + i; |
|
memcpy(tstate, midstate, 32); |
|
HMAC_SHA256_80_init(ldata, tstate, ostate); |
|
PBKDF2_SHA256_80_128(tstate, ostate, ldata, inp); |
|
computeGold(inp, ref, (uchar*)scratch); |
|
bool good = true; |
|
|
|
if (sha_on_cpu) { |
|
if (memcmp(&X[cur][i * 32], ref, 32*sizeof(uint32_t)) != 0) good = false; |
|
} else { |
|
PBKDF2_SHA256_128_32(tstate, ostate, ref, refhash); |
|
if (memcmp(&hash[cur][i * 8], refhash, 32) != 0) good = false; |
|
} |
|
|
|
if (!good) |
|
applog(LOG_INFO, "GPU #%d: %s result does not validate on CPU (i=%d, s=%d)!", device_map[thr_id], device_name[thr_id], i, cur); |
|
else { |
|
*hashes_done = n - pdata[19]; |
|
pdata[19] = nonce[cur] + i; |
|
result = 1; |
|
goto byebye; |
|
} |
|
} |
|
} |
|
} |
|
|
|
cur = (cur+1)&1; |
|
nxt = (nxt+1)&1; |
|
++iteration; |
|
|
|
//printf("n=%d, thr=%d, max=%d, rest=%d\n", n, throughput, max_nonce, work_restart[thr_id].restart); |
|
} while (n <= max_nonce && !work_restart[thr_id].restart); |
|
|
|
*hashes_done = n - pdata[19]; |
|
pdata[19] = n; |
|
byebye: |
|
delete[] datax4[0]; delete[] datax4[1]; delete[] hashx4[0]; delete[] hashx4[1]; |
|
delete[] tstatex4[0]; delete[] tstatex4[1]; delete[] ostatex4[0]; delete[] ostatex4[1]; |
|
delete[] Xx4[0]; delete[] Xx4[1]; |
|
delete [] scratch; |
|
gettimeofday(tv_end, NULL); |
|
return result; |
|
} |
|
|
|
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) |
|
|
|
static void xor_salsa8(uint32_t * const B, const uint32_t * const C) |
|
{ |
|
uint32_t x0 = (B[ 0] ^= C[ 0]), x1 = (B[ 1] ^= C[ 1]), x2 = (B[ 2] ^= C[ 2]), x3 = (B[ 3] ^= C[ 3]); |
|
uint32_t x4 = (B[ 4] ^= C[ 4]), x5 = (B[ 5] ^= C[ 5]), x6 = (B[ 6] ^= C[ 6]), x7 = (B[ 7] ^= C[ 7]); |
|
uint32_t x8 = (B[ 8] ^= C[ 8]), x9 = (B[ 9] ^= C[ 9]), xa = (B[10] ^= C[10]), xb = (B[11] ^= C[11]); |
|
uint32_t xc = (B[12] ^= C[12]), xd = (B[13] ^= C[13]), xe = (B[14] ^= C[14]), xf = (B[15] ^= C[15]); |
|
|
|
/* Operate on columns. */ |
|
x4 ^= ROTL(x0 + xc, 7); x9 ^= ROTL(x5 + x1, 7); xe ^= ROTL(xa + x6, 7); x3 ^= ROTL(xf + xb, 7); |
|
x8 ^= ROTL(x4 + x0, 9); xd ^= ROTL(x9 + x5, 9); x2 ^= ROTL(xe + xa, 9); x7 ^= ROTL(x3 + xf, 9); |
|
xc ^= ROTL(x8 + x4, 13); x1 ^= ROTL(xd + x9, 13); x6 ^= ROTL(x2 + xe, 13); xb ^= ROTL(x7 + x3, 13); |
|
x0 ^= ROTL(xc + x8, 18); x5 ^= ROTL(x1 + xd, 18); xa ^= ROTL(x6 + x2, 18); xf ^= ROTL(xb + x7, 18); |
|
|
|
/* Operate on rows. */ |
|
x1 ^= ROTL(x0 + x3, 7); x6 ^= ROTL(x5 + x4, 7); xb ^= ROTL(xa + x9, 7); xc ^= ROTL(xf + xe, 7); |
|
x2 ^= ROTL(x1 + x0, 9); x7 ^= ROTL(x6 + x5, 9); x8 ^= ROTL(xb + xa, 9); xd ^= ROTL(xc + xf, 9); |
|
x3 ^= ROTL(x2 + x1, 13); x4 ^= ROTL(x7 + x6, 13); x9 ^= ROTL(x8 + xb, 13); xe ^= ROTL(xd + xc, 13); |
|
x0 ^= ROTL(x3 + x2, 18); x5 ^= ROTL(x4 + x7, 18); xa ^= ROTL(x9 + x8, 18); xf ^= ROTL(xe + xd, 18); |
|
|
|
/* Operate on columns. */ |
|
x4 ^= ROTL(x0 + xc, 7); x9 ^= ROTL(x5 + x1, 7); xe ^= ROTL(xa + x6, 7); x3 ^= ROTL(xf + xb, 7); |
|
x8 ^= ROTL(x4 + x0, 9); xd ^= ROTL(x9 + x5, 9); x2 ^= ROTL(xe + xa, 9); x7 ^= ROTL(x3 + xf, 9); |
|
xc ^= ROTL(x8 + x4, 13); x1 ^= ROTL(xd + x9, 13); x6 ^= ROTL(x2 + xe, 13); xb ^= ROTL(x7 + x3, 13); |
|
x0 ^= ROTL(xc + x8, 18); x5 ^= ROTL(x1 + xd, 18); xa ^= ROTL(x6 + x2, 18); xf ^= ROTL(xb + x7, 18); |
|
|
|
/* Operate on rows. */ |
|
x1 ^= ROTL(x0 + x3, 7); x6 ^= ROTL(x5 + x4, 7); xb ^= ROTL(xa + x9, 7); xc ^= ROTL(xf + xe, 7); |
|
x2 ^= ROTL(x1 + x0, 9); x7 ^= ROTL(x6 + x5, 9); x8 ^= ROTL(xb + xa, 9); xd ^= ROTL(xc + xf, 9); |
|
x3 ^= ROTL(x2 + x1, 13); x4 ^= ROTL(x7 + x6, 13); x9 ^= ROTL(x8 + xb, 13); xe ^= ROTL(xd + xc, 13); |
|
x0 ^= ROTL(x3 + x2, 18); x5 ^= ROTL(x4 + x7, 18); xa ^= ROTL(x9 + x8, 18); xf ^= ROTL(xe + xd, 18); |
|
|
|
/* Operate on columns. */ |
|
x4 ^= ROTL(x0 + xc, 7); x9 ^= ROTL(x5 + x1, 7); xe ^= ROTL(xa + x6, 7); x3 ^= ROTL(xf + xb, 7); |
|
x8 ^= ROTL(x4 + x0, 9); xd ^= ROTL(x9 + x5, 9); x2 ^= ROTL(xe + xa, 9); x7 ^= ROTL(x3 + xf, 9); |
|
xc ^= ROTL(x8 + x4, 13); x1 ^= ROTL(xd + x9, 13); x6 ^= ROTL(x2 + xe, 13); xb ^= ROTL(x7 + x3, 13); |
|
x0 ^= ROTL(xc + x8, 18); x5 ^= ROTL(x1 + xd, 18); xa ^= ROTL(x6 + x2, 18); xf ^= ROTL(xb + x7, 18); |
|
|
|
/* Operate on rows. */ |
|
x1 ^= ROTL(x0 + x3, 7); x6 ^= ROTL(x5 + x4, 7); xb ^= ROTL(xa + x9, 7); xc ^= ROTL(xf + xe, 7); |
|
x2 ^= ROTL(x1 + x0, 9); x7 ^= ROTL(x6 + x5, 9); x8 ^= ROTL(xb + xa, 9); xd ^= ROTL(xc + xf, 9); |
|
x3 ^= ROTL(x2 + x1, 13); x4 ^= ROTL(x7 + x6, 13); x9 ^= ROTL(x8 + xb, 13); xe ^= ROTL(xd + xc, 13); |
|
x0 ^= ROTL(x3 + x2, 18); x5 ^= ROTL(x4 + x7, 18); xa ^= ROTL(x9 + x8, 18); xf ^= ROTL(xe + xd, 18); |
|
|
|
/* Operate on columns. */ |
|
x4 ^= ROTL(x0 + xc, 7); x9 ^= ROTL(x5 + x1, 7); xe ^= ROTL(xa + x6, 7); x3 ^= ROTL(xf + xb, 7); |
|
x8 ^= ROTL(x4 + x0, 9); xd ^= ROTL(x9 + x5, 9); x2 ^= ROTL(xe + xa, 9); x7 ^= ROTL(x3 + xf, 9); |
|
xc ^= ROTL(x8 + x4, 13); x1 ^= ROTL(xd + x9, 13); x6 ^= ROTL(x2 + xe, 13); xb ^= ROTL(x7 + x3, 13); |
|
x0 ^= ROTL(xc + x8, 18); x5 ^= ROTL(x1 + xd, 18); xa ^= ROTL(x6 + x2, 18); xf ^= ROTL(xb + x7, 18); |
|
|
|
/* Operate on rows. */ |
|
x1 ^= ROTL(x0 + x3, 7); x6 ^= ROTL(x5 + x4, 7); xb ^= ROTL(xa + x9, 7); xc ^= ROTL(xf + xe, 7); |
|
x2 ^= ROTL(x1 + x0, 9); x7 ^= ROTL(x6 + x5, 9); x8 ^= ROTL(xb + xa, 9); xd ^= ROTL(xc + xf, 9); |
|
x3 ^= ROTL(x2 + x1, 13); x4 ^= ROTL(x7 + x6, 13); x9 ^= ROTL(x8 + xb, 13); xe ^= ROTL(xd + xc, 13); |
|
x0 ^= ROTL(x3 + x2, 18); x5 ^= ROTL(x4 + x7, 18); xa ^= ROTL(x9 + x8, 18); xf ^= ROTL(xe + xd, 18); |
|
|
|
B[ 0] += x0; B[ 1] += x1; B[ 2] += x2; B[ 3] += x3; B[ 4] += x4; B[ 5] += x5; B[ 6] += x6; B[ 7] += x7; |
|
B[ 8] += x8; B[ 9] += x9; B[10] += xa; B[11] += xb; B[12] += xc; B[13] += xd; B[14] += xe; B[15] += xf; |
|
} |
|
|
|
/** |
|
* @param X input/ouput |
|
* @param V scratch buffer |
|
* @param N factor (def. 1024) |
|
*/ |
|
static void scrypt_core(uint32_t *X, uint32_t *V, uint32_t N) |
|
{ |
|
for (int i = 0; i < N; i++) { |
|
memcpy(&V[i * 32], X, 128); |
|
xor_salsa8(&X[0], &X[16]); |
|
xor_salsa8(&X[16], &X[0]); |
|
} |
|
for (int i = 0; i < N; i++) { |
|
uint32_t j = 32 * (X[16] & (N - 1)); |
|
for (uint8_t k = 0; k < 32; k++) |
|
X[k] ^= V[j + k]; |
|
xor_salsa8(&X[0], &X[16]); |
|
xor_salsa8(&X[16], &X[0]); |
|
} |
|
} |
|
|
|
/** |
|
* Compute reference data set on the CPU |
|
* @param input input data as provided to device |
|
* @param reference reference data, computed but preallocated |
|
* @param scratchpad scrypt scratchpad |
|
**/ |
|
static void computeGold(uint32_t* const input, uint32_t *reference, uchar *scratchpad) |
|
{ |
|
uint32_t X[32] = { 0 }; |
|
uint32_t *V = (uint32_t*) scratchpad; |
|
uint32_t N = (1<<(opt_nfactor+1)); // default 9 = 1024 |
|
|
|
for (int k = 0; k < 32; k++) |
|
X[k] = input[k]; |
|
|
|
scrypt_core(X, V, N); |
|
|
|
for (int k = 0; k < 32; k++) |
|
reference[k] = X[k]; |
|
} |
|
|
|
/* cputest */ |
|
void scrypthash(void* output, const void* input) |
|
{ |
|
uint32_t _ALIGN(64) X[32], ref[32] = { 0 }, tstate[8], ostate[8], midstate[8]; |
|
uint32_t _ALIGN(64) data[20]; |
|
uchar *scratchbuf; |
|
|
|
// no default set with --cputest |
|
if (opt_nfactor == 0) opt_nfactor = 9; |
|
|
|
scratchbuf = (uchar*) calloc(4 * 128 + 63, 1UL << (opt_nfactor+1)); |
|
|
|
memcpy(data, input, 80); |
|
|
|
sha256_init(midstate); |
|
sha256_transform(midstate, data, 0); /* ok */ |
|
|
|
memcpy(tstate, midstate, 32); |
|
HMAC_SHA256_80_init(data, tstate, ostate); |
|
PBKDF2_SHA256_80_128(tstate, ostate, data, X); /* ok */ |
|
|
|
if (scratchbuf) { |
|
computeGold(X, ref, scratchbuf); |
|
PBKDF2_SHA256_128_32(tstate, ostate, ref, (uint32_t*) output); |
|
} else { |
|
memset(output, 0, 32); |
|
} |
|
|
|
free(scratchbuf); |
|
}
|
|
|