mirror of
https://github.com/GOSTSec/ccminer
synced 2025-01-22 20:44:49 +00:00
990 lines
28 KiB
C
990 lines
28 KiB
C
/*
|
|
* Copyright (c) 2009 Colin Percival, 2011 ArtForz
|
|
* Copyright (c) 2012 Andrew Moon (floodyberry)
|
|
* Copyright (c) 2012 Samuel Neves <sneves@dei.uc.pt>
|
|
* Copyright (c) 2014 John Doering <ghostlander@phoenixcoin.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "neoscrypt.h"
|
|
|
|
#ifdef WIN32
|
|
/* sizeof(unsigned long) = 4 for MinGW64 */
|
|
typedef unsigned long long ulong;
|
|
#else
|
|
typedef unsigned long ulong;
|
|
#endif
|
|
typedef unsigned int uint;
|
|
typedef unsigned char uchar;
|
|
typedef unsigned int bool;
|
|
|
|
#define MIN(a, b) ((a) < (b) ? a : b)
|
|
#define MAX(a, b) ((a) > (b) ? a : b)
|
|
|
|
/* SHA-256 */
|
|
|
|
static const uint32_t sha256_constants[64] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
};
|
|
|
|
#define Ch(x,y,z) (z ^ (x & (y ^ z)))
|
|
#define Maj(x,y,z) (((x | y) & z) | (x & y))
|
|
#define S0(x) (ROTR32(x, 2) ^ ROTR32(x, 13) ^ ROTR32(x, 22))
|
|
#define S1(x) (ROTR32(x, 6) ^ ROTR32(x, 11) ^ ROTR32(x, 25))
|
|
#define G0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ (x >> 3))
|
|
#define G1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ (x >> 10))
|
|
#define W0(in,i) (U8TO32_BE(&in[i * 4]))
|
|
#define W1(i) (G1(w[i - 2]) + w[i - 7] + G0(w[i - 15]) + w[i - 16])
|
|
#define STEP(i) \
|
|
t1 = S0(r[0]) + Maj(r[0], r[1], r[2]); \
|
|
t0 = r[7] + S1(r[4]) + Ch(r[4], r[5], r[6]) + sha256_constants[i] + w[i]; \
|
|
r[7] = r[6]; \
|
|
r[6] = r[5]; \
|
|
r[5] = r[4]; \
|
|
r[4] = r[3] + t0; \
|
|
r[3] = r[2]; \
|
|
r[2] = r[1]; \
|
|
r[1] = r[0]; \
|
|
r[0] = t0 + t1;
|
|
|
|
|
|
typedef struct sha256_hash_state_t {
|
|
uint32_t H[8];
|
|
uint64_t T;
|
|
uint32_t leftover;
|
|
uint8_t buffer[SCRYPT_HASH_BLOCK_SIZE];
|
|
} sha256_hash_state;
|
|
|
|
|
|
static void sha256_blocks(sha256_hash_state *S, const uint8_t *in, size_t blocks)
|
|
{
|
|
uint32_t r[8], w[64], t0, t1;
|
|
size_t i;
|
|
|
|
for (i = 0; i < 8; i++)
|
|
r[i] = S->H[i];
|
|
|
|
while (blocks--) {
|
|
for (i = 0U; i < 16; i++) {
|
|
w[i] = W0(in, i);
|
|
}
|
|
for (i = 16; i < 64; i++) {
|
|
w[i] = W1(i);
|
|
}
|
|
for (i = 0U; i < 64; i++) {
|
|
STEP(i);
|
|
}
|
|
for (i = 0U; i < 8U; i++) {
|
|
r[i] += S->H[i];
|
|
S->H[i] = r[i];
|
|
}
|
|
S->T += SCRYPT_HASH_BLOCK_SIZE * 8;
|
|
in += SCRYPT_HASH_BLOCK_SIZE;
|
|
}
|
|
}
|
|
|
|
static void neoscrypt_hash_init_sha256(sha256_hash_state *S)
|
|
{
|
|
S->H[0] = 0x6a09e667;
|
|
S->H[1] = 0xbb67ae85;
|
|
S->H[2] = 0x3c6ef372;
|
|
S->H[3] = 0xa54ff53a;
|
|
S->H[4] = 0x510e527f;
|
|
S->H[5] = 0x9b05688c;
|
|
S->H[6] = 0x1f83d9ab;
|
|
S->H[7] = 0x5be0cd19;
|
|
S->T = 0;
|
|
S->leftover = 0;
|
|
}
|
|
|
|
static void neoscrypt_hash_update_sha256(sha256_hash_state *S, const uint8_t *in, size_t inlen)
|
|
{
|
|
size_t blocks, want;
|
|
|
|
/* handle the previous data */
|
|
if (S->leftover) {
|
|
want = (SCRYPT_HASH_BLOCK_SIZE - S->leftover);
|
|
want = (want < inlen) ? want : inlen;
|
|
memcpy(S->buffer + S->leftover, in, want);
|
|
S->leftover += (uint32_t)want;
|
|
if (S->leftover < SCRYPT_HASH_BLOCK_SIZE)
|
|
return;
|
|
in += want;
|
|
inlen -= want;
|
|
sha256_blocks(S, S->buffer, 1);
|
|
}
|
|
|
|
/* handle the current data */
|
|
blocks = (inlen & ~(SCRYPT_HASH_BLOCK_SIZE - 1));
|
|
S->leftover = (uint32_t)(inlen - blocks);
|
|
if (blocks) {
|
|
sha256_blocks(S, in, blocks / SCRYPT_HASH_BLOCK_SIZE);
|
|
in += blocks;
|
|
}
|
|
|
|
/* handle leftover data */
|
|
if (S->leftover)
|
|
memcpy(S->buffer, in, S->leftover);
|
|
}
|
|
|
|
static void neoscrypt_hash_finish_sha256(sha256_hash_state *S, uint8_t *hash)
|
|
{
|
|
uint64_t t = S->T + (S->leftover * 8);
|
|
|
|
S->buffer[S->leftover] = 0x80;
|
|
if (S->leftover <= 55) {
|
|
memset(S->buffer + S->leftover + 1, 0, 55 - S->leftover);
|
|
} else {
|
|
memset(S->buffer + S->leftover + 1, 0, 63 - S->leftover);
|
|
sha256_blocks(S, S->buffer, 1);
|
|
memset(S->buffer, 0, 56);
|
|
}
|
|
|
|
U64TO8_BE(S->buffer + 56, t);
|
|
sha256_blocks(S, S->buffer, 1);
|
|
|
|
U32TO8_BE(&hash[ 0], S->H[0]);
|
|
U32TO8_BE(&hash[ 4], S->H[1]);
|
|
U32TO8_BE(&hash[ 8], S->H[2]);
|
|
U32TO8_BE(&hash[12], S->H[3]);
|
|
U32TO8_BE(&hash[16], S->H[4]);
|
|
U32TO8_BE(&hash[20], S->H[5]);
|
|
U32TO8_BE(&hash[24], S->H[6]);
|
|
U32TO8_BE(&hash[28], S->H[7]);
|
|
}
|
|
|
|
static void neoscrypt_hash_sha256(hash_digest hash, const uint8_t *m, size_t mlen)
|
|
{
|
|
sha256_hash_state st;
|
|
neoscrypt_hash_init_sha256(&st);
|
|
neoscrypt_hash_update_sha256(&st, m, mlen);
|
|
neoscrypt_hash_finish_sha256(&st, hash);
|
|
}
|
|
|
|
|
|
/* HMAC for SHA-256 */
|
|
|
|
typedef struct sha256_hmac_state_t {
|
|
sha256_hash_state inner, outer;
|
|
} sha256_hmac_state;
|
|
|
|
static void neoscrypt_hmac_init_sha256(sha256_hmac_state *st, const uint8_t *key, size_t keylen)
|
|
{
|
|
uint8_t pad[SCRYPT_HASH_BLOCK_SIZE] = {0};
|
|
size_t i;
|
|
|
|
neoscrypt_hash_init_sha256(&st->inner);
|
|
neoscrypt_hash_init_sha256(&st->outer);
|
|
|
|
if (keylen <= SCRYPT_HASH_BLOCK_SIZE) {
|
|
/* use the key directly if it's <= blocksize bytes */
|
|
memcpy(pad, key, keylen);
|
|
} else {
|
|
/* if it's > blocksize bytes, hash it */
|
|
neoscrypt_hash_sha256(pad, key, keylen);
|
|
}
|
|
|
|
/* inner = (key ^ 0x36) */
|
|
/* h(inner || ...) */
|
|
for (i = 0; i < SCRYPT_HASH_BLOCK_SIZE; i++)
|
|
pad[i] ^= 0x36;
|
|
neoscrypt_hash_update_sha256(&st->inner, pad, SCRYPT_HASH_BLOCK_SIZE);
|
|
|
|
/* outer = (key ^ 0x5c) */
|
|
/* h(outer || ...) */
|
|
for (i = 0; i < SCRYPT_HASH_BLOCK_SIZE; i++)
|
|
pad[i] ^= (0x5c ^ 0x36);
|
|
neoscrypt_hash_update_sha256(&st->outer, pad, SCRYPT_HASH_BLOCK_SIZE);
|
|
}
|
|
|
|
static void neoscrypt_hmac_update_sha256(sha256_hmac_state *st, const uint8_t *m, size_t mlen)
|
|
{
|
|
/* h(inner || m...) */
|
|
neoscrypt_hash_update_sha256(&st->inner, m, mlen);
|
|
}
|
|
|
|
static void neoscrypt_hmac_finish_sha256(sha256_hmac_state *st, hash_digest mac)
|
|
{
|
|
/* h(inner || m) */
|
|
hash_digest innerhash;
|
|
neoscrypt_hash_finish_sha256(&st->inner, innerhash);
|
|
|
|
/* h(outer || h(inner || m)) */
|
|
neoscrypt_hash_update_sha256(&st->outer, innerhash, sizeof(innerhash));
|
|
neoscrypt_hash_finish_sha256(&st->outer, mac);
|
|
}
|
|
|
|
|
|
/* PBKDF2 for SHA-256 */
|
|
|
|
static void neoscrypt_pbkdf2_sha256(const uint8_t *password, size_t password_len,
|
|
const uint8_t *salt, size_t salt_len, uint64_t N, uint8_t *output, size_t output_len)
|
|
{
|
|
sha256_hmac_state hmac_pw, hmac_pw_salt, work;
|
|
hash_digest ti, u;
|
|
uint8_t be[4];
|
|
uint32_t i, j, k, blocks;
|
|
|
|
/* bytes must be <= (0xffffffff - (SCRYPT_HASH_DIGEST_SIZE - 1)), which they will always be under scrypt */
|
|
|
|
/* hmac(password, ...) */
|
|
neoscrypt_hmac_init_sha256(&hmac_pw, password, password_len);
|
|
|
|
/* hmac(password, salt...) */
|
|
hmac_pw_salt = hmac_pw;
|
|
neoscrypt_hmac_update_sha256(&hmac_pw_salt, salt, salt_len);
|
|
|
|
blocks = ((uint32_t)output_len + (SCRYPT_HASH_DIGEST_SIZE - 1)) / SCRYPT_HASH_DIGEST_SIZE;
|
|
for(i = 1; i <= blocks; i++) {
|
|
/* U1 = hmac(password, salt || be(i)) */
|
|
U32TO8_BE(be, i);
|
|
work = hmac_pw_salt;
|
|
neoscrypt_hmac_update_sha256(&work, be, 4);
|
|
neoscrypt_hmac_finish_sha256(&work, ti);
|
|
memcpy(u, ti, sizeof(u));
|
|
|
|
/* T[i] = U1 ^ U2 ^ U3... */
|
|
for(j = 0; j < N - 1; j++) {
|
|
/* UX = hmac(password, U{X-1}) */
|
|
work = hmac_pw;
|
|
neoscrypt_hmac_update_sha256(&work, u, SCRYPT_HASH_DIGEST_SIZE);
|
|
neoscrypt_hmac_finish_sha256(&work, u);
|
|
|
|
/* T[i] ^= UX */
|
|
for(k = 0; k < sizeof(u); k++)
|
|
ti[k] ^= u[k];
|
|
}
|
|
|
|
memcpy(output, ti, (output_len > SCRYPT_HASH_DIGEST_SIZE) ? SCRYPT_HASH_DIGEST_SIZE : output_len);
|
|
output += SCRYPT_HASH_DIGEST_SIZE;
|
|
output_len -= SCRYPT_HASH_DIGEST_SIZE;
|
|
}
|
|
}
|
|
|
|
|
|
/* NeoScrypt */
|
|
|
|
#if defined(ASM)
|
|
|
|
extern void neoscrypt_salsa(uint *X, uint rounds);
|
|
extern void neoscrypt_salsa_tangle(uint *X, uint count);
|
|
extern void neoscrypt_chacha(uint *X, uint rounds);
|
|
|
|
extern void neoscrypt_blkcpy(void *dstp, const void *srcp, uint len);
|
|
extern void neoscrypt_blkswp(void *blkAp, void *blkBp, uint len);
|
|
extern void neoscrypt_blkxor(void *dstp, const void *srcp, uint len);
|
|
|
|
#else
|
|
|
|
/* Salsa20, rounds must be a multiple of 2 */
|
|
static void neoscrypt_salsa(uint *X, uint rounds)
|
|
{
|
|
uint x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, t;
|
|
|
|
x0 = X[0]; x1 = X[1]; x2 = X[2]; x3 = X[3];
|
|
x4 = X[4]; x5 = X[5]; x6 = X[6]; x7 = X[7];
|
|
x8 = X[8]; x9 = X[9]; x10 = X[10]; x11 = X[11];
|
|
x12 = X[12]; x13 = X[13]; x14 = X[14]; x15 = X[15];
|
|
|
|
#define quarter(a, b, c, d) \
|
|
t = a + d; t = ROTL32(t, 7); b ^= t; \
|
|
t = b + a; t = ROTL32(t, 9); c ^= t; \
|
|
t = c + b; t = ROTL32(t, 13); d ^= t; \
|
|
t = d + c; t = ROTL32(t, 18); a ^= t;
|
|
|
|
for(; rounds; rounds -= 2) {
|
|
quarter( x0, x4, x8, x12);
|
|
quarter( x5, x9, x13, x1);
|
|
quarter(x10, x14, x2, x6);
|
|
quarter(x15, x3, x7, x11);
|
|
quarter( x0, x1, x2, x3);
|
|
quarter( x5, x6, x7, x4);
|
|
quarter(x10, x11, x8, x9);
|
|
quarter(x15, x12, x13, x14);
|
|
}
|
|
|
|
X[0] += x0; X[1] += x1; X[2] += x2; X[3] += x3;
|
|
X[4] += x4; X[5] += x5; X[6] += x6; X[7] += x7;
|
|
X[8] += x8; X[9] += x9; X[10] += x10; X[11] += x11;
|
|
X[12] += x12; X[13] += x13; X[14] += x14; X[15] += x15;
|
|
|
|
#undef quarter
|
|
}
|
|
|
|
/* ChaCha20, rounds must be a multiple of 2 */
|
|
static void neoscrypt_chacha(uint *X, uint rounds)
|
|
{
|
|
uint x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, t;
|
|
|
|
x0 = X[0]; x1 = X[1]; x2 = X[2]; x3 = X[3];
|
|
x4 = X[4]; x5 = X[5]; x6 = X[6]; x7 = X[7];
|
|
x8 = X[8]; x9 = X[9]; x10 = X[10]; x11 = X[11];
|
|
x12 = X[12]; x13 = X[13]; x14 = X[14]; x15 = X[15];
|
|
|
|
#define quarter(a,b,c,d) \
|
|
a += b; t = d ^ a; d = ROTL32(t, 16); \
|
|
c += d; t = b ^ c; b = ROTL32(t, 12); \
|
|
a += b; t = d ^ a; d = ROTL32(t, 8); \
|
|
c += d; t = b ^ c; b = ROTL32(t, 7);
|
|
|
|
for(; rounds; rounds -= 2) {
|
|
quarter( x0, x4, x8, x12);
|
|
quarter( x1, x5, x9, x13);
|
|
quarter( x2, x6, x10, x14);
|
|
quarter( x3, x7, x11, x15);
|
|
quarter( x0, x5, x10, x15);
|
|
quarter( x1, x6, x11, x12);
|
|
quarter( x2, x7, x8, x13);
|
|
quarter( x3, x4, x9, x14);
|
|
}
|
|
|
|
X[0] += x0; X[1] += x1; X[2] += x2; X[3] += x3;
|
|
X[4] += x4; X[5] += x5; X[6] += x6; X[7] += x7;
|
|
X[8] += x8; X[9] += x9; X[10] += x10; X[11] += x11;
|
|
X[12] += x12; X[13] += x13; X[14] += x14; X[15] += x15;
|
|
|
|
#undef quarter
|
|
}
|
|
|
|
|
|
/* Fast 32-bit / 64-bit memcpy();
|
|
* len must be a multiple of 32 bytes */
|
|
static void neoscrypt_blkcpy(void *dstp, const void *srcp, uint len)
|
|
{
|
|
ulong *dst = (ulong *) dstp;
|
|
ulong *src = (ulong *) srcp;
|
|
uint i;
|
|
|
|
for(i = 0; i < (len / sizeof(ulong)); i += 4) {
|
|
dst[i] = src[i];
|
|
dst[i + 1] = src[i + 1];
|
|
dst[i + 2] = src[i + 2];
|
|
dst[i + 3] = src[i + 3];
|
|
}
|
|
}
|
|
|
|
/* Fast 32-bit / 64-bit block swapper;
|
|
* len must be a multiple of 32 bytes */
|
|
static void neoscrypt_blkswp(void *blkAp, void *blkBp, uint len)
|
|
{
|
|
ulong *blkA = (ulong *) blkAp;
|
|
ulong *blkB = (ulong *) blkBp;
|
|
register ulong t0, t1, t2, t3;
|
|
uint i;
|
|
|
|
for(i = 0; i < (len / sizeof(ulong)); i += 4) {
|
|
t0 = blkA[i];
|
|
t1 = blkA[i + 1];
|
|
t2 = blkA[i + 2];
|
|
t3 = blkA[i + 3];
|
|
blkA[i] = blkB[i];
|
|
blkA[i + 1] = blkB[i + 1];
|
|
blkA[i + 2] = blkB[i + 2];
|
|
blkA[i + 3] = blkB[i + 3];
|
|
blkB[i] = t0;
|
|
blkB[i + 1] = t1;
|
|
blkB[i + 2] = t2;
|
|
blkB[i + 3] = t3;
|
|
}
|
|
}
|
|
|
|
/* Fast 32-bit / 64-bit block XOR engine;
|
|
* len must be a multiple of 32 bytes */
|
|
static void neoscrypt_blkxor(void *dstp, const void *srcp, uint len)
|
|
{
|
|
ulong *dst = (ulong *) dstp;
|
|
ulong *src = (ulong *) srcp;
|
|
uint i;
|
|
|
|
for (i = 0; i < (len / sizeof(ulong)); i += 4) {
|
|
dst[i] ^= src[i];
|
|
dst[i + 1] ^= src[i + 1];
|
|
dst[i + 2] ^= src[i + 2];
|
|
dst[i + 3] ^= src[i + 3];
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/* 32-bit / 64-bit optimised memcpy() */
|
|
static void neoscrypt_copy(void *dstp, const void *srcp, uint len)
|
|
{
|
|
ulong *dst = (ulong *) dstp;
|
|
ulong *src = (ulong *) srcp;
|
|
uint i, tail;
|
|
|
|
for(i = 0; i < (len / sizeof(ulong)); i++)
|
|
dst[i] = src[i];
|
|
|
|
tail = len & (sizeof(ulong) - 1);
|
|
if(tail) {
|
|
uchar *dstb = (uchar *) dstp;
|
|
uchar *srcb = (uchar *) srcp;
|
|
|
|
for(i = len - tail; i < len; i++)
|
|
dstb[i] = srcb[i];
|
|
}
|
|
}
|
|
|
|
/* 32-bit / 64-bit optimised memory erase aka memset() to zero */
|
|
static void neoscrypt_erase(void *dstp, uint len)
|
|
{
|
|
const ulong null = 0;
|
|
ulong *dst = (ulong *) dstp;
|
|
uint i, tail;
|
|
|
|
for (i = 0; i < (len / sizeof(ulong)); i++)
|
|
dst[i] = null;
|
|
|
|
tail = len & (sizeof(ulong) - 1);
|
|
if (tail) {
|
|
uchar *dstb = (uchar *) dstp;
|
|
|
|
for(i = len - tail; i < len; i++)
|
|
dstb[i] = (uchar)null;
|
|
}
|
|
}
|
|
|
|
/* 32-bit / 64-bit optimised XOR engine */
|
|
static void neoscrypt_xor(void *dstp, const void *srcp, uint len)
|
|
{
|
|
ulong *dst = (ulong *) dstp;
|
|
ulong *src = (ulong *) srcp;
|
|
uint i, tail;
|
|
|
|
for (i = 0; i < (len / sizeof(ulong)); i++)
|
|
dst[i] ^= src[i];
|
|
|
|
tail = len & (sizeof(ulong) - 1);
|
|
if (tail) {
|
|
uchar *dstb = (uchar *) dstp;
|
|
uchar *srcb = (uchar *) srcp;
|
|
|
|
for(i = len - tail; i < len; i++)
|
|
dstb[i] ^= srcb[i];
|
|
}
|
|
}
|
|
|
|
|
|
/* BLAKE2s */
|
|
|
|
#define BLAKE2S_BLOCK_SIZE 64U
|
|
#define BLAKE2S_OUT_SIZE 32U
|
|
#define BLAKE2S_KEY_SIZE 32U
|
|
|
|
/* Parameter block of 32 bytes */
|
|
typedef struct blake2s_param_t {
|
|
uchar digest_length;
|
|
uchar key_length;
|
|
uchar fanout;
|
|
uchar depth;
|
|
uint leaf_length;
|
|
uchar node_offset[6];
|
|
uchar node_depth;
|
|
uchar inner_length;
|
|
uchar salt[8];
|
|
uchar personal[8];
|
|
} blake2s_param;
|
|
|
|
/* State block of 180 bytes */
|
|
typedef struct blake2s_state_t {
|
|
uint h[8];
|
|
uint t[2];
|
|
uint f[2];
|
|
uchar buf[2 * BLAKE2S_BLOCK_SIZE];
|
|
uint buflen;
|
|
} blake2s_state;
|
|
|
|
static const uint blake2s_IV[8] = {
|
|
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
|
|
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
|
|
};
|
|
|
|
static const uint8_t blake2s_sigma[10][16] = {
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } ,
|
|
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } ,
|
|
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } ,
|
|
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } ,
|
|
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } ,
|
|
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } ,
|
|
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } ,
|
|
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } ,
|
|
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } ,
|
|
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } ,
|
|
};
|
|
|
|
static void blake2s_compress(blake2s_state *S, const uint *buf)
|
|
{
|
|
uint i;
|
|
uint m[16];
|
|
uint v[16];
|
|
|
|
neoscrypt_copy(m, buf, 64);
|
|
neoscrypt_copy(v, S, 32);
|
|
|
|
v[ 8] = blake2s_IV[0];
|
|
v[ 9] = blake2s_IV[1];
|
|
v[10] = blake2s_IV[2];
|
|
v[11] = blake2s_IV[3];
|
|
v[12] = S->t[0] ^ blake2s_IV[4];
|
|
v[13] = S->t[1] ^ blake2s_IV[5];
|
|
v[14] = S->f[0] ^ blake2s_IV[6];
|
|
v[15] = S->f[1] ^ blake2s_IV[7];
|
|
|
|
#define G(r,i,a,b,c,d) do { \
|
|
a = a + b + m[blake2s_sigma[r][2*i+0]]; \
|
|
d = ROTR32(d ^ a, 16); \
|
|
c = c + d; \
|
|
b = ROTR32(b ^ c, 12); \
|
|
a = a + b + m[blake2s_sigma[r][2*i+1]]; \
|
|
d = ROTR32(d ^ a, 8); \
|
|
c = c + d; \
|
|
b = ROTR32(b ^ c, 7); \
|
|
} while(0)
|
|
|
|
#define ROUND(r) do { \
|
|
G(r, 0, v[ 0], v[ 4], v[ 8], v[12]); \
|
|
G(r, 1, v[ 1], v[ 5], v[ 9], v[13]); \
|
|
G(r, 2, v[ 2], v[ 6], v[10], v[14]); \
|
|
G(r, 3, v[ 3], v[ 7], v[11], v[15]); \
|
|
G(r, 4, v[ 0], v[ 5], v[10], v[15]); \
|
|
G(r, 5, v[ 1], v[ 6], v[11], v[12]); \
|
|
G(r, 6, v[ 2], v[ 7], v[ 8], v[13]); \
|
|
G(r, 7, v[ 3], v[ 4], v[ 9], v[14]); \
|
|
} while(0)
|
|
|
|
ROUND(0);
|
|
ROUND(1);
|
|
ROUND(2);
|
|
ROUND(3);
|
|
ROUND(4);
|
|
ROUND(5);
|
|
ROUND(6);
|
|
ROUND(7);
|
|
ROUND(8);
|
|
ROUND(9);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
S->h[i] = S->h[i] ^ v[i] ^ v[i + 8];
|
|
|
|
#undef G
|
|
#undef ROUND
|
|
}
|
|
|
|
static void blake2s_update(blake2s_state *S, const uchar *input, uint input_size)
|
|
{
|
|
uint left, fill;
|
|
|
|
while(input_size > 0) {
|
|
left = S->buflen;
|
|
fill = 2 * BLAKE2S_BLOCK_SIZE - left;
|
|
if(input_size > fill) {
|
|
/* Buffer fill */
|
|
neoscrypt_copy(S->buf + left, input, fill);
|
|
S->buflen += fill;
|
|
/* Counter increment */
|
|
S->t[0] += BLAKE2S_BLOCK_SIZE;
|
|
/* Compress */
|
|
blake2s_compress(S, (uint *) S->buf);
|
|
/* Shift buffer left */
|
|
neoscrypt_copy(S->buf, S->buf + BLAKE2S_BLOCK_SIZE, BLAKE2S_BLOCK_SIZE);
|
|
S->buflen -= BLAKE2S_BLOCK_SIZE;
|
|
input += fill;
|
|
input_size -= fill;
|
|
} else {
|
|
neoscrypt_copy(S->buf + left, input, input_size);
|
|
S->buflen += input_size;
|
|
/* Do not compress */
|
|
input += input_size;
|
|
input_size = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void neoscrypt_blake2s(const void *input, const uint input_size, const void *key, const uchar key_size,
|
|
void *output, const uchar output_size)
|
|
{
|
|
uchar block[BLAKE2S_BLOCK_SIZE];
|
|
blake2s_param P[1];
|
|
blake2s_state S[1];
|
|
|
|
/* Initialise */
|
|
neoscrypt_erase(P, 32);
|
|
P->digest_length = output_size;
|
|
P->key_length = key_size;
|
|
P->fanout = 1;
|
|
P->depth = 1;
|
|
|
|
neoscrypt_erase(S, 180);
|
|
neoscrypt_copy(S, blake2s_IV, 32);
|
|
neoscrypt_xor(S, P, 32);
|
|
|
|
neoscrypt_erase(block, BLAKE2S_BLOCK_SIZE);
|
|
neoscrypt_copy(block, key, key_size);
|
|
blake2s_update(S, (uchar *) block, BLAKE2S_BLOCK_SIZE);
|
|
|
|
/* Update */
|
|
blake2s_update(S, (uchar *) input, input_size);
|
|
|
|
/* Finish */
|
|
if(S->buflen > BLAKE2S_BLOCK_SIZE) {
|
|
S->t[0] += BLAKE2S_BLOCK_SIZE;
|
|
blake2s_compress(S, (uint *) S->buf);
|
|
S->buflen -= BLAKE2S_BLOCK_SIZE;
|
|
neoscrypt_copy(S->buf, S->buf + BLAKE2S_BLOCK_SIZE, S->buflen);
|
|
}
|
|
S->t[0] += S->buflen;
|
|
S->f[0] = ~0U;
|
|
neoscrypt_erase(S->buf + S->buflen, 2 * BLAKE2S_BLOCK_SIZE - S->buflen);
|
|
blake2s_compress(S, (uint *) S->buf);
|
|
|
|
/* Write back */
|
|
neoscrypt_copy(output, S, output_size);
|
|
|
|
//for (int k = 0; k<4; k++) { printf("cpu blake %d %08x %08x\n", k, ((unsigned int*)output)[2 * k], ((unsigned int*)output)[2 * k + 1]); }
|
|
}
|
|
|
|
|
|
#define FASTKDF_BUFFER_SIZE 256U
|
|
|
|
/* FastKDF, a fast buffered key derivation function:
|
|
* FASTKDF_BUFFER_SIZE must be a power of 2;
|
|
* password_len, salt_len and output_len should not exceed FASTKDF_BUFFER_SIZE;
|
|
* prf_output_size must be <= prf_key_size; */
|
|
static void neoscrypt_fastkdf(const uchar *password, uint password_len, const uchar *salt, uint salt_len,
|
|
uint N, uchar *output, uint output_len)
|
|
{
|
|
//for (int i = 0; i<10; i++) { printf("cpu password %d %08x %08x\n", i, ((unsigned int*)password)[2 * i], ((unsigned int*)password)[2 * i+1]); }
|
|
const uint stack_align = 0x40;
|
|
const uint kdf_buf_size = 256U; //FASTKDF_BUFFER_SIZE
|
|
const uint prf_input_size = 64U; //BLAKE2S_BLOCK_SIZE
|
|
const uint prf_key_size = 32U; //BLAKE2S_KEY_SIZE
|
|
const uint prf_output_size = 32U; //BLAKE2S_OUT_SIZE
|
|
uint bufptr, a, b, i, j;
|
|
uchar *A, *B, *prf_input, *prf_key, *prf_output;
|
|
uchar *stack;
|
|
stack = (uchar*)malloc(sizeof(uchar) * 2 * kdf_buf_size + prf_input_size + prf_key_size + prf_output_size + stack_align);
|
|
/* Align and set up the buffers in stack */
|
|
//uchar stack[2 * kdf_buf_size + prf_input_size + prf_key_size + prf_output_size + stack_align];
|
|
|
|
A = &stack[stack_align & ~(stack_align - 1)];
|
|
B = &A[kdf_buf_size + prf_input_size];
|
|
prf_output = &A[2 * kdf_buf_size + prf_input_size + prf_key_size];
|
|
|
|
/* Initialise the password buffer */
|
|
if(password_len > kdf_buf_size)
|
|
password_len = kdf_buf_size;
|
|
|
|
a = kdf_buf_size / password_len;
|
|
for(i = 0; i < a; i++)
|
|
neoscrypt_copy(&A[i * password_len], &password[0], password_len);
|
|
b = kdf_buf_size - a * password_len;
|
|
if(b)
|
|
neoscrypt_copy(&A[a * password_len], &password[0], b);
|
|
neoscrypt_copy(&A[kdf_buf_size], &password[0], prf_input_size);
|
|
|
|
/* Initialise the salt buffer */
|
|
if(salt_len > kdf_buf_size)
|
|
salt_len = kdf_buf_size;
|
|
|
|
a = kdf_buf_size / salt_len;
|
|
for(i = 0; i < a; i++)
|
|
neoscrypt_copy(&B[i * salt_len], &salt[0], salt_len);
|
|
b = kdf_buf_size - a * salt_len;
|
|
if(b)
|
|
neoscrypt_copy(&B[a * salt_len], &salt[0], b);
|
|
neoscrypt_copy(&B[kdf_buf_size], &salt[0], prf_key_size);
|
|
|
|
/* The primary iteration */
|
|
for(i = 0, bufptr = 0; i < N; i++) {
|
|
|
|
/* Map the PRF input buffer */
|
|
prf_input = &A[bufptr];
|
|
|
|
/* Map the PRF key buffer */
|
|
prf_key = &B[bufptr];
|
|
|
|
/* PRF */
|
|
// for (int k = 0; k<(prf_input_size/4); k++) { printf("cpu bufptr %08x before blake %d %d %08x \n",bufptr, i, k, ((unsigned int*)prf_input)[k]); }
|
|
neoscrypt_blake2s(prf_input, prf_input_size, prf_key, prf_key_size, prf_output, prf_output_size);
|
|
// for (int k = 0; k<(prf_output_size/4); k++) { printf("cpu after blake %d %d %08x \n", i, k, ((unsigned int*)prf_output)[k]); }
|
|
|
|
/* Calculate the next buffer pointer */
|
|
for(j = 0, bufptr = 0; j < prf_output_size; j++)
|
|
bufptr += prf_output[j];
|
|
bufptr &= (kdf_buf_size - 1);
|
|
|
|
/* Modify the salt buffer */
|
|
neoscrypt_xor(&B[bufptr], &prf_output[0], prf_output_size);
|
|
|
|
/* Head modified, tail updated */
|
|
if(bufptr < prf_key_size)
|
|
neoscrypt_copy(&B[kdf_buf_size + bufptr], &B[bufptr], MIN(prf_output_size, prf_key_size - bufptr));
|
|
|
|
/* Tail modified, head updated */
|
|
if((kdf_buf_size - bufptr) < prf_output_size)
|
|
neoscrypt_copy(&B[0], &B[kdf_buf_size], prf_output_size - (kdf_buf_size - bufptr));
|
|
}
|
|
|
|
/* Modify and copy into the output buffer */
|
|
if(output_len > kdf_buf_size)
|
|
output_len = kdf_buf_size;
|
|
|
|
a = kdf_buf_size - bufptr;
|
|
if(a >= output_len) {
|
|
neoscrypt_xor(&B[bufptr], &A[0], output_len);
|
|
neoscrypt_copy(&output[0], &B[bufptr], output_len);
|
|
} else {
|
|
neoscrypt_xor(&B[bufptr], &A[0], a);
|
|
neoscrypt_xor(&B[0], &A[a], output_len - a);
|
|
neoscrypt_copy(&output[0], &B[bufptr], a);
|
|
neoscrypt_copy(&output[a], &B[0], output_len - a);
|
|
}
|
|
// for (int i = 0; i<10; i++) { printf("cpu fastkdf %d %08x %08x\n", i, ((unsigned int*)output)[2 * i], ((unsigned int*)output)[2 * i + 1]); }
|
|
}
|
|
|
|
|
|
/* Configurable optimised block mixer */
|
|
static void neoscrypt_blkmix(uint *X, uint *Y, uint r, uint mixmode)
|
|
{
|
|
uint i, mixer, rounds;
|
|
|
|
mixer = mixmode >> 8;
|
|
rounds = mixmode & 0xFF;
|
|
|
|
/* NeoScrypt flow: Scrypt flow:
|
|
Xa ^= Xd; M(Xa'); Ya = Xa"; Xa ^= Xb; M(Xa'); Ya = Xa";
|
|
Xb ^= Xa"; M(Xb'); Yb = Xb"; Xb ^= Xa"; M(Xb'); Yb = Xb";
|
|
Xc ^= Xb"; M(Xc'); Yc = Xc"; Xa" = Ya;
|
|
Xd ^= Xc"; M(Xd'); Yd = Xd"; Xb" = Yb;
|
|
Xa" = Ya; Xb" = Yc;
|
|
Xc" = Yb; Xd" = Yd; */
|
|
|
|
if (r == 1) {
|
|
neoscrypt_blkxor(&X[0], &X[16], SCRYPT_BLOCK_SIZE);
|
|
if(mixer)
|
|
neoscrypt_chacha(&X[0], rounds);
|
|
else
|
|
neoscrypt_salsa(&X[0], rounds);
|
|
neoscrypt_blkxor(&X[16], &X[0], SCRYPT_BLOCK_SIZE);
|
|
if(mixer)
|
|
neoscrypt_chacha(&X[16], rounds);
|
|
else
|
|
neoscrypt_salsa(&X[16], rounds);
|
|
return;
|
|
}
|
|
|
|
if (r == 2) {
|
|
neoscrypt_blkxor(&X[0], &X[48], SCRYPT_BLOCK_SIZE);
|
|
if(mixer)
|
|
neoscrypt_chacha(&X[0], rounds);
|
|
else
|
|
neoscrypt_salsa(&X[0], rounds);
|
|
neoscrypt_blkxor(&X[16], &X[0], SCRYPT_BLOCK_SIZE);
|
|
if(mixer)
|
|
neoscrypt_chacha(&X[16], rounds);
|
|
else
|
|
neoscrypt_salsa(&X[16], rounds);
|
|
neoscrypt_blkxor(&X[32], &X[16], SCRYPT_BLOCK_SIZE);
|
|
if(mixer)
|
|
neoscrypt_chacha(&X[32], rounds);
|
|
else
|
|
neoscrypt_salsa(&X[32], rounds);
|
|
neoscrypt_blkxor(&X[48], &X[32], SCRYPT_BLOCK_SIZE);
|
|
if(mixer)
|
|
neoscrypt_chacha(&X[48], rounds);
|
|
else
|
|
neoscrypt_salsa(&X[48], rounds);
|
|
neoscrypt_blkswp(&X[16], &X[32], SCRYPT_BLOCK_SIZE);
|
|
return;
|
|
}
|
|
|
|
/* Reference code for any reasonable r */
|
|
for (i = 0; i < 2 * r; i++) {
|
|
if(i) neoscrypt_blkxor(&X[16 * i], &X[16 * (i - 1)], SCRYPT_BLOCK_SIZE);
|
|
else neoscrypt_blkxor(&X[0], &X[16 * (2 * r - 1)], SCRYPT_BLOCK_SIZE);
|
|
if(mixer)
|
|
neoscrypt_chacha(&X[16 * i], rounds);
|
|
else
|
|
neoscrypt_salsa(&X[16 * i], rounds);
|
|
neoscrypt_blkcpy(&Y[16 * i], &X[16 * i], SCRYPT_BLOCK_SIZE);
|
|
}
|
|
for (i = 0; i < r; i++)
|
|
neoscrypt_blkcpy(&X[16 * i], &Y[16 * 2 * i], SCRYPT_BLOCK_SIZE);
|
|
for (i = 0; i < r; i++)
|
|
neoscrypt_blkcpy(&X[16 * (i + r)], &Y[16 * (2 * i + 1)], SCRYPT_BLOCK_SIZE);
|
|
}
|
|
|
|
/* NeoScrypt core engine:
|
|
* p = 1, salt = password;
|
|
* Basic customisation (required):
|
|
* profile bit 0:
|
|
* 0 = NeoScrypt(128, 2, 1) with Salsa20/20 and ChaCha20/20;
|
|
* 1 = Scrypt(1024, 1, 1) with Salsa20/8;
|
|
* profile bits 4 to 1:
|
|
* 0000 = FastKDF-BLAKE2s;
|
|
* 0001 = PBKDF2-HMAC-SHA256;
|
|
* Extended customisation (optional):
|
|
* profile bit 31:
|
|
* 0 = extended customisation absent;
|
|
* 1 = extended customisation present;
|
|
* profile bits 7 to 5 (rfactor):
|
|
* 000 = r of 1;
|
|
* 001 = r of 2;
|
|
* 010 = r of 4;
|
|
* ...
|
|
* 111 = r of 128;
|
|
* profile bits 12 to 8 (Nfactor):
|
|
* 00000 = N of 2;
|
|
* 00001 = N of 4;
|
|
* 00010 = N of 8;
|
|
* .....
|
|
* 00110 = N of 128;
|
|
* .....
|
|
* 01001 = N of 1024;
|
|
* .....
|
|
* 11110 = N of 2147483648;
|
|
* profile bits 30 to 13 are reserved */
|
|
void neoscrypt(unsigned char *output, const unsigned char *input, unsigned int profile)
|
|
{
|
|
uint N = 128, r = 2, dblmix = 1, mixmode = 0x14, stack_align = 0x40;
|
|
uint kdf, i, j;
|
|
uint *X, *Y, *Z, *V;
|
|
|
|
if(profile & 0x1) {
|
|
N = 1024; /* N = (1 << (Nfactor + 1)); */
|
|
r = 1; /* r = (1 << rfactor); */
|
|
dblmix = 0; /* Salsa only */
|
|
mixmode = 0x08; /* 8 rounds */
|
|
}
|
|
|
|
if(profile >> 31) {
|
|
N = (1 << (((profile >> 8) & 0x1F) + 1));
|
|
r = (1 << ((profile >> 5) & 0x7));
|
|
}
|
|
uchar *stack;
|
|
stack = (uchar*)malloc(((N + 3) * r * 2 * SCRYPT_BLOCK_SIZE + stack_align)*sizeof(uchar));
|
|
/* X = r * 2 * SCRYPT_BLOCK_SIZE */
|
|
X = (uint *) &stack[stack_align & ~(stack_align - 1)];
|
|
/* Z is a copy of X for ChaCha */
|
|
Z = &X[32 * r];
|
|
/* Y is an X sized temporal space */
|
|
Y = &X[64 * r];
|
|
/* V = N * r * 2 * SCRYPT_BLOCK_SIZE */
|
|
V = &X[96 * r];
|
|
|
|
/* X = KDF(password, salt) */
|
|
kdf = (profile >> 1) & 0xF;
|
|
|
|
switch(kdf) {
|
|
|
|
default:
|
|
case(0x0):
|
|
neoscrypt_fastkdf(input, 80, input, 80, 32, (uchar *) X, r * 2 * SCRYPT_BLOCK_SIZE);
|
|
break;
|
|
|
|
case(0x1):
|
|
neoscrypt_pbkdf2_sha256(input, 80, input, 80, 1, (uchar *) X, r * 2 * SCRYPT_BLOCK_SIZE);
|
|
break;
|
|
}
|
|
|
|
/* Process ChaCha 1st, Salsa 2nd and XOR them into FastKDF; otherwise Salsa only */
|
|
|
|
if(dblmix) {
|
|
/* blkcpy(Z, X) */
|
|
neoscrypt_blkcpy(&Z[0], &X[0], r * 2 * SCRYPT_BLOCK_SIZE);
|
|
|
|
/* Z = SMix(Z) */
|
|
for(i = 0; i < N; i++) {
|
|
/* blkcpy(V, Z) */
|
|
neoscrypt_blkcpy(&V[i * (32 * r)], &Z[0], r * 2 * SCRYPT_BLOCK_SIZE);
|
|
/* blkmix(Z, Y) */
|
|
neoscrypt_blkmix(&Z[0], &Y[0], r, (mixmode | 0x0100));
|
|
}
|
|
for(i = 0; i < N; i++) {
|
|
/* integerify(Z) mod N */
|
|
j = (32 * r) * (Z[16 * (2 * r - 1)] & (N - 1));
|
|
/* blkxor(Z, V) */
|
|
neoscrypt_blkxor(&Z[0], &V[j], r * 2 * SCRYPT_BLOCK_SIZE);
|
|
/* blkmix(Z, Y) */
|
|
neoscrypt_blkmix(&Z[0], &Y[0], r, (mixmode | 0x0100));
|
|
}
|
|
}
|
|
|
|
#if (ASM)
|
|
/* Must be called before and after SSE2 Salsa */
|
|
neoscrypt_salsa_tangle(&X[0], r * 2);
|
|
#endif
|
|
|
|
/* X = SMix(X) */
|
|
for(i = 0; i < N; i++) {
|
|
/* blkcpy(V, X) */
|
|
neoscrypt_blkcpy(&V[i * (32 * r)], &X[0], r * 2 * SCRYPT_BLOCK_SIZE);
|
|
/* blkmix(X, Y) */
|
|
neoscrypt_blkmix(&X[0], &Y[0], r, mixmode);
|
|
}
|
|
for(i = 0; i < N; i++) {
|
|
/* integerify(X) mod N */
|
|
j = (32 * r) * (X[16 * (2 * r - 1)] & (N - 1));
|
|
/* blkxor(X, V) */
|
|
neoscrypt_blkxor(&X[0], &V[j], r * 2 * SCRYPT_BLOCK_SIZE);
|
|
/* blkmix(X, Y) */
|
|
neoscrypt_blkmix(&X[0], &Y[0], r, mixmode);
|
|
}
|
|
|
|
#if (ASM)
|
|
neoscrypt_salsa_tangle(&X[0], r * 2);
|
|
#endif
|
|
|
|
if(dblmix)
|
|
/* blkxor(X, Z) */
|
|
neoscrypt_blkxor(&X[0], &Z[0], r * 2 * SCRYPT_BLOCK_SIZE);
|
|
|
|
/* output = KDF(password, X) */
|
|
switch(kdf) {
|
|
|
|
default:
|
|
case(0x0):
|
|
neoscrypt_fastkdf(input, 80, (uchar *) X, r * 2 * SCRYPT_BLOCK_SIZE, 32, output, 32);
|
|
break;
|
|
|
|
case(0x1):
|
|
neoscrypt_pbkdf2_sha256(input, 80, (uchar *) X, r * 2 * SCRYPT_BLOCK_SIZE, 1, output, 32);
|
|
break;
|
|
}
|
|
}
|
|
|