1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-18 10:40:14 +00:00
ccminer/scrypt/nv_kernel2.cu
Tanguy Pruvot 8fd2739a65 lyra2: support for SM 2.1 cards (GTX 460)
also fix the build (scrypt) for this arch.

else, 318,26 kH/s on a GTX 460...
2015-10-14 01:12:41 +00:00

643 lines
23 KiB
Plaintext

//
// Experimental Kernel for Kepler (Compute 3.5) devices
// code submitted by nVidia performance engineer Alexey Panteleev
// with modifications by Christian Buchner
//
// for Compute 3.5
// NOTE: compile this .cu module for compute_35,sm_35 with --maxrregcount=80
// for Compute 3.0
// NOTE: compile this .cu module for compute_30,sm_30 with --maxrregcount=63
//
#include <map>
#include <cuda_runtime.h>
#include "miner.h"
#include "salsa_kernel.h"
#include "nv_kernel2.h"
#define THREADS_PER_WU 1 // single thread per hash
#if __CUDA_ARCH__ < 350
// Kepler (Compute 3.0)
#define __ldg(x) (*(x))
#endif
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
// grab lane ID
static __device__ __inline__ unsigned int __laneId() { unsigned int laneId; asm( "mov.u32 %0, %%laneid;" : "=r"( laneId ) ); return laneId; }
// forward references
template <int ALGO> __global__ void nv2_scrypt_core_kernelA(uint32_t *g_idata, int begin, int end);
template <int ALGO> __global__ void nv2_scrypt_core_kernelB(uint32_t *g_odata, int begin, int end);
template <int ALGO> __global__ void nv2_scrypt_core_kernelA_LG(uint32_t *g_idata, int begin, int end, unsigned int LOOKUP_GAP);
template <int ALGO> __global__ void nv2_scrypt_core_kernelB_LG(uint32_t *g_odata, int begin, int end, unsigned int LOOKUP_GAP);
// scratchbuf constants (pointers to scratch buffer for each work unit)
__constant__ uint32_t* c_V[TOTAL_WARP_LIMIT];
// iteration count N
__constant__ uint32_t c_N;
__constant__ uint32_t c_N_1; // N - 1
__constant__ uint32_t c_spacing; // (N+LOOKUP_GAP-1)/LOOKUP_GAP
NV2Kernel::NV2Kernel() : KernelInterface()
{
}
void NV2Kernel::set_scratchbuf_constants(int MAXWARPS, uint32_t** h_V)
{
checkCudaErrors(cudaMemcpyToSymbol(c_V, h_V, MAXWARPS*sizeof(uint32_t*), 0, cudaMemcpyHostToDevice));
}
bool NV2Kernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int thr_id, cudaStream_t stream, uint32_t* d_idata, uint32_t* d_odata, unsigned int N, unsigned int LOOKUP_GAP, bool interactive, bool benchmark, int texture_cache)
{
bool success = true;
bool scrypt = IS_SCRYPT();
bool chacha = IS_SCRYPT_JANE();
// make some constants available to kernel, update only initially and when changing
static uint32_t prev_N[MAX_GPUS] = { 0 };
if (N != prev_N[thr_id]) {
uint32_t h_N = N;
uint32_t h_N_1 = N-1;
uint32_t h_spacing = (N+LOOKUP_GAP-1)/LOOKUP_GAP;
cudaMemcpyToSymbolAsync(c_N, &h_N, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream);
cudaMemcpyToSymbolAsync(c_N_1, &h_N_1, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream);
cudaMemcpyToSymbolAsync(c_spacing, &h_spacing, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream);
prev_N[thr_id] = N;
}
// First phase: Sequential writes to scratchpad.
const int batch = device_batchsize[thr_id];
unsigned int pos = 0;
do
{
if (LOOKUP_GAP == 1) {
if (scrypt) nv2_scrypt_core_kernelA<A_SCRYPT> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N));
if (chacha) nv2_scrypt_core_kernelA<A_SCRYPT_JANE><<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N));
} else {
if (scrypt) nv2_scrypt_core_kernelA_LG<A_SCRYPT> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP);
if (chacha) nv2_scrypt_core_kernelA_LG<A_SCRYPT_JANE><<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP);
}
pos += batch;
} while (pos < N);
// Second phase: Random read access from scratchpad.
pos = 0;
do
{
if (LOOKUP_GAP == 1) {
if (scrypt) nv2_scrypt_core_kernelB<A_SCRYPT > <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N));
if (chacha) nv2_scrypt_core_kernelB<A_SCRYPT_JANE> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N));
} else {
if (scrypt) nv2_scrypt_core_kernelB_LG<A_SCRYPT > <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP);
if (chacha) nv2_scrypt_core_kernelB_LG<A_SCRYPT_JANE> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP);
}
pos += batch;
} while (pos < N);
return success;
}
static __device__ uint4& operator^=(uint4& left, const uint4& right)
{
left.x ^= right.x;
left.y ^= right.y;
left.z ^= right.z;
left.w ^= right.w;
return left;
}
__device__ __forceinline__ uint4 __shfl(const uint4 val, unsigned int lane, unsigned int width)
{
return make_uint4(
(unsigned int)__shfl((int)val.x, lane, width),
(unsigned int)__shfl((int)val.y, lane, width),
(unsigned int)__shfl((int)val.z, lane, width),
(unsigned int)__shfl((int)val.w, lane, width));
}
__device__ __forceinline__ void __transposed_write_BC(uint4 (&B)[4], uint4 (&C)[4], uint4 *D, int spacing)
{
unsigned int laneId = __laneId();
unsigned int lane8 = laneId%8;
unsigned int tile = laneId/8;
uint4 T1[8], T2[8];
/* Source matrix, A-H are threads, 0-7 are data items, thread A is marked with `*`:
*A0 B0 C0 D0 E0 F0 G0 H0
*A1 B1 C1 D1 E1 F1 G1 H1
*A2 B2 C2 D2 E2 F2 G2 H2
*A3 B3 C3 D3 E3 F3 G3 H3
*A4 B4 C4 D4 E4 F4 G4 H4
*A5 B5 C5 D5 E5 F5 G5 H5
*A6 B6 C6 D6 E6 F6 G6 H6
*A7 B7 C7 D7 E7 F7 G7 H7
*/
// rotate rows
T1[0] = B[0];
T1[1] = __shfl(B[1], lane8 + 7, 8);
T1[2] = __shfl(B[2], lane8 + 6, 8);
T1[3] = __shfl(B[3], lane8 + 5, 8);
T1[4] = __shfl(C[0], lane8 + 4, 8);
T1[5] = __shfl(C[1], lane8 + 3, 8);
T1[6] = __shfl(C[2], lane8 + 2, 8);
T1[7] = __shfl(C[3], lane8 + 1, 8);
/* Matrix after row rotates:
*A0 B0 C0 D0 E0 F0 G0 H0
H1 *A1 B1 C1 D1 E1 F1 G1
G2 H2 *A2 B2 C2 D2 E2 F2
F3 G3 H3 *A3 B3 C3 D3 E3
E4 F4 G4 H4 *A4 B4 C4 D4
D5 E5 F5 G5 H5 *A5 B5 C5
C6 D6 E6 F6 G6 H6 *A6 B6
B7 C7 D7 E7 F7 G7 H7 *A7
*/
// rotate columns up using a barrel shifter simulation
// column X is rotated up by (X+1) items
#pragma unroll 8
for(int n = 0; n < 8; n++) T2[n] = ((lane8+1) & 1) ? T1[(n+1) % 8] : T1[n];
#pragma unroll 8
for(int n = 0; n < 8; n++) T1[n] = ((lane8+1) & 2) ? T2[(n+2) % 8] : T2[n];
#pragma unroll 8
for(int n = 0; n < 8; n++) T2[n] = ((lane8+1) & 4) ? T1[(n+4) % 8] : T1[n];
/* Matrix after column rotates:
H1 H2 H3 H4 H5 H6 H7 H0
G2 G3 G4 G5 G6 G7 G0 G1
F3 F4 F5 F6 F7 F0 F1 F2
E4 E5 E6 E7 E0 E1 E2 E3
D5 D6 D7 D0 D1 D2 D3 D4
C6 C7 C0 C1 C2 C3 C4 C5
B7 B0 B1 B2 B3 B4 B5 B6
*A0 *A1 *A2 *A3 *A4 *A5 *A6 *A7
*/
// rotate rows again using address math and write to D, in reverse row order
D[spacing*2*(32*tile )+ lane8 ] = T2[7];
D[spacing*2*(32*tile+4 )+(lane8+7)%8] = T2[6];
D[spacing*2*(32*tile+8 )+(lane8+6)%8] = T2[5];
D[spacing*2*(32*tile+12)+(lane8+5)%8] = T2[4];
D[spacing*2*(32*tile+16)+(lane8+4)%8] = T2[3];
D[spacing*2*(32*tile+20)+(lane8+3)%8] = T2[2];
D[spacing*2*(32*tile+24)+(lane8+2)%8] = T2[1];
D[spacing*2*(32*tile+28)+(lane8+1)%8] = T2[0];
}
__device__ __forceinline__ void __transposed_read_BC(const uint4 *S, uint4 (&B)[4], uint4 (&C)[4], int spacing, int row)
{
unsigned int laneId = __laneId();
unsigned int lane8 = laneId%8;
unsigned int tile = laneId/8;
// Perform the same transposition as in __transposed_write_BC, but in reverse order.
// See the illustrations in comments for __transposed_write_BC.
// read and rotate rows, in reverse row order
uint4 T1[8], T2[8];
T1[7] = __ldg(&S[(spacing*2*(32*tile ) + lane8 + 8*__shfl(row, 0, 8))]);
T1[6] = __ldg(&S[(spacing*2*(32*tile+4 ) + (lane8+7)%8 + 8*__shfl(row, 1, 8))]);
T1[5] = __ldg(&S[(spacing*2*(32*tile+8 ) + (lane8+6)%8 + 8*__shfl(row, 2, 8))]);
T1[4] = __ldg(&S[(spacing*2*(32*tile+12) + (lane8+5)%8 + 8*__shfl(row, 3, 8))]);
T1[3] = __ldg(&S[(spacing*2*(32*tile+16) + (lane8+4)%8 + 8*__shfl(row, 4, 8))]);
T1[2] = __ldg(&S[(spacing*2*(32*tile+20) + (lane8+3)%8 + 8*__shfl(row, 5, 8))]);
T1[1] = __ldg(&S[(spacing*2*(32*tile+24) + (lane8+2)%8 + 8*__shfl(row, 6, 8))]);
T1[0] = __ldg(&S[(spacing*2*(32*tile+28) + (lane8+1)%8 + 8*__shfl(row, 7, 8))]);
// rotate columns down using a barrel shifter simulation
// column X is rotated down by (X+1) items, or up by (8-(X+1)) = (7-X) items
#pragma unroll 8
for(int n = 0; n < 8; n++) T2[n] = ((7-lane8) & 1) ? T1[(n+1) % 8] : T1[n];
#pragma unroll 8
for(int n = 0; n < 8; n++) T1[n] = ((7-lane8) & 2) ? T2[(n+2) % 8] : T2[n];
#pragma unroll 8
for(int n = 0; n < 8; n++) T2[n] = ((7-lane8) & 4) ? T1[(n+4) % 8] : T1[n];
// rotate rows
B[0] = T2[0];
B[1] = __shfl(T2[1], lane8 + 1, 8);
B[2] = __shfl(T2[2], lane8 + 2, 8);
B[3] = __shfl(T2[3], lane8 + 3, 8);
C[0] = __shfl(T2[4], lane8 + 4, 8);
C[1] = __shfl(T2[5], lane8 + 5, 8);
C[2] = __shfl(T2[6], lane8 + 6, 8);
C[3] = __shfl(T2[7], lane8 + 7, 8);
}
__device__ __forceinline__ void __transposed_xor_BC(const uint4 *S, uint4 (&B)[4], uint4 (&C)[4], int spacing, int row)
{
uint4 BT[4], CT[4];
__transposed_read_BC(S, BT, CT, spacing, row);
#pragma unroll 4
for(int n = 0; n < 4; n++)
{
B[n] ^= BT[n];
C[n] ^= CT[n];
}
}
#if __CUDA_ARCH__ < 350
// Kepler (Compute 3.0)
#define ROTL(a, b) ((a)<<(b))|((a)>>(32-(b)))
#else
// Kepler (Compute 3.5)
#define ROTL(a, b) __funnelshift_l( a, a, b );
#endif
#if 0
#define QUARTER(a,b,c,d) \
a += b; d ^= a; d = ROTL(d,16); \
c += d; b ^= c; b = ROTL(b,12); \
a += b; d ^= a; d = ROTL(d,8); \
c += d; b ^= c; b = ROTL(b,7);
static __device__ void xor_chacha8(uint4 *B, uint4 *C)
{
uint32_t x[16];
x[0]=(B[0].x ^= C[0].x);
x[1]=(B[0].y ^= C[0].y);
x[2]=(B[0].z ^= C[0].z);
x[3]=(B[0].w ^= C[0].w);
x[4]=(B[1].x ^= C[1].x);
x[5]=(B[1].y ^= C[1].y);
x[6]=(B[1].z ^= C[1].z);
x[7]=(B[1].w ^= C[1].w);
x[8]=(B[2].x ^= C[2].x);
x[9]=(B[2].y ^= C[2].y);
x[10]=(B[2].z ^= C[2].z);
x[11]=(B[2].w ^= C[2].w);
x[12]=(B[3].x ^= C[3].x);
x[13]=(B[3].y ^= C[3].y);
x[14]=(B[3].z ^= C[3].z);
x[15]=(B[3].w ^= C[3].w);
/* Operate on columns. */
QUARTER( x[0], x[4], x[ 8], x[12] )
QUARTER( x[1], x[5], x[ 9], x[13] )
QUARTER( x[2], x[6], x[10], x[14] )
QUARTER( x[3], x[7], x[11], x[15] )
/* Operate on diagonals */
QUARTER( x[0], x[5], x[10], x[15] )
QUARTER( x[1], x[6], x[11], x[12] )
QUARTER( x[2], x[7], x[ 8], x[13] )
QUARTER( x[3], x[4], x[ 9], x[14] )
/* Operate on columns. */
QUARTER( x[0], x[4], x[ 8], x[12] )
QUARTER( x[1], x[5], x[ 9], x[13] )
QUARTER( x[2], x[6], x[10], x[14] )
QUARTER( x[3], x[7], x[11], x[15] )
/* Operate on diagonals */
QUARTER( x[0], x[5], x[10], x[15] )
QUARTER( x[1], x[6], x[11], x[12] )
QUARTER( x[2], x[7], x[ 8], x[13] )
QUARTER( x[3], x[4], x[ 9], x[14] )
/* Operate on columns. */
QUARTER( x[0], x[4], x[ 8], x[12] )
QUARTER( x[1], x[5], x[ 9], x[13] )
QUARTER( x[2], x[6], x[10], x[14] )
QUARTER( x[3], x[7], x[11], x[15] )
/* Operate on diagonals */
QUARTER( x[0], x[5], x[10], x[15] )
QUARTER( x[1], x[6], x[11], x[12] )
QUARTER( x[2], x[7], x[ 8], x[13] )
QUARTER( x[3], x[4], x[ 9], x[14] )
/* Operate on columns. */
QUARTER( x[0], x[4], x[ 8], x[12] )
QUARTER( x[1], x[5], x[ 9], x[13] )
QUARTER( x[2], x[6], x[10], x[14] )
QUARTER( x[3], x[7], x[11], x[15] )
/* Operate on diagonals */
QUARTER( x[0], x[5], x[10], x[15] )
QUARTER( x[1], x[6], x[11], x[12] )
QUARTER( x[2], x[7], x[ 8], x[13] )
QUARTER( x[3], x[4], x[ 9], x[14] )
B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7];
B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15];
}
#else
#define ADD4(d1,d2,d3,d4,s1,s2,s3,s4) \
d1 += s1; d2 += s2; d3 += s3; d4 += s4;
#define XOR4(d1,d2,d3,d4,s1,s2,s3,s4) \
d1 ^= s1; d2 ^= s2; d3 ^= s3; d4 ^= s4;
#define ROTL4(d1,d2,d3,d4,amt) \
d1 = ROTL(d1, amt); d2 = ROTL(d2, amt); d3 = ROTL(d3, amt); d4 = ROTL(d4, amt);
#define QROUND(a1,a2,a3,a4, b1,b2,b3,b4, c1,c2,c3,c4, amt) \
ADD4 (a1,a2,a3,a4, c1,c2,c3,c4) \
XOR4 (b1,b2,b3,b4, a1,a2,a3,a4) \
ROTL4(b1,b2,b3,b4, amt)
static __device__ void xor_chacha8(uint4 *B, uint4 *C)
{
uint32_t x[16];
x[0]=(B[0].x ^= C[0].x);
x[1]=(B[0].y ^= C[0].y);
x[2]=(B[0].z ^= C[0].z);
x[3]=(B[0].w ^= C[0].w);
x[4]=(B[1].x ^= C[1].x);
x[5]=(B[1].y ^= C[1].y);
x[6]=(B[1].z ^= C[1].z);
x[7]=(B[1].w ^= C[1].w);
x[8]=(B[2].x ^= C[2].x);
x[9]=(B[2].y ^= C[2].y);
x[10]=(B[2].z ^= C[2].z);
x[11]=(B[2].w ^= C[2].w);
x[12]=(B[3].x ^= C[3].x);
x[13]=(B[3].y ^= C[3].y);
x[14]=(B[3].z ^= C[3].z);
x[15]=(B[3].w ^= C[3].w);
/* Operate on columns. */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7);
/* Operate on diagonals */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7);
/* Operate on columns. */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7);
/* Operate on diagonals */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7);
/* Operate on columns. */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7);
/* Operate on diagonals */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7);
/* Operate on columns. */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7);
/* Operate on diagonals */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7);
B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7];
B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15];
}
#endif
#define ROTL7(a0,a1,a2,a3,a00,a10,a20,a30){\
a0^=ROTL(a00, 7); a1^=ROTL(a10, 7); a2^=ROTL(a20, 7); a3^=ROTL(a30, 7);\
};\
#define ROTL9(a0,a1,a2,a3,a00,a10,a20,a30){\
a0^=ROTL(a00, 9); a1^=ROTL(a10, 9); a2^=ROTL(a20, 9); a3^=ROTL(a30, 9);\
};\
#define ROTL13(a0,a1,a2,a3,a00,a10,a20,a30){\
a0^=ROTL(a00, 13); a1^=ROTL(a10, 13); a2^=ROTL(a20, 13); a3^=ROTL(a30, 13);\
};\
#define ROTL18(a0,a1,a2,a3,a00,a10,a20,a30){\
a0^=ROTL(a00, 18); a1^=ROTL(a10, 18); a2^=ROTL(a20, 18); a3^=ROTL(a30, 18);\
};\
static __device__ void xor_salsa8(uint4 *B, uint4 *C)
{
uint32_t x[16];
x[0]=(B[0].x ^= C[0].x);
x[1]=(B[0].y ^= C[0].y);
x[2]=(B[0].z ^= C[0].z);
x[3]=(B[0].w ^= C[0].w);
x[4]=(B[1].x ^= C[1].x);
x[5]=(B[1].y ^= C[1].y);
x[6]=(B[1].z ^= C[1].z);
x[7]=(B[1].w ^= C[1].w);
x[8]=(B[2].x ^= C[2].x);
x[9]=(B[2].y ^= C[2].y);
x[10]=(B[2].z ^= C[2].z);
x[11]=(B[2].w ^= C[2].w);
x[12]=(B[3].x ^= C[3].x);
x[13]=(B[3].y ^= C[3].y);
x[14]=(B[3].z ^= C[3].z);
x[15]=(B[3].w ^= C[3].w);
/* Operate on columns. */
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]);
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]);
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]);
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]);
/* Operate on rows. */
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]);
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]);
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]);
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]);
/* Operate on columns. */
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]);
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]);
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]);
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]);
/* Operate on rows. */
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]);
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]);
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]);
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]);
/* Operate on columns. */
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]);
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]);
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]);
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]);
/* Operate on rows. */
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]);
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]);
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]);
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]);
/* Operate on columns. */
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]);
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]);
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]);
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]);
/* Operate on rows. */
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]);
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]);
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]);
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]);
B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7];
B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15];
}
template <int ALGO> static __device__ void block_mixer(uint4 *B, uint4 *C)
{
switch (ALGO)
{
case A_SCRYPT: xor_salsa8(B, C); break;
case A_SCRYPT_JANE: xor_chacha8(B, C); break;
}
}
////////////////////////////////////////////////////////////////////////////////
//! Experimental Scrypt core kernel for Titan devices.
//! @param g_idata input data in global memory
//! @param g_odata output data in global memory
////////////////////////////////////////////////////////////////////////////////
template <int ALGO> __global__ void nv2_scrypt_core_kernelA(uint32_t *g_idata, int begin, int end)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x / warpSize * warpSize;
g_idata += 32 * offset;
uint32_t * V = c_V[offset / warpSize];
uint4 B[4], C[4];
int i = begin;
if(i == 0) {
__transposed_read_BC((uint4*)g_idata, B, C, 1, 0);
__transposed_write_BC(B, C, (uint4*)V, c_N);
++i;
} else
__transposed_read_BC((uint4*)(V + (i-1)*32), B, C, c_N, 0);
while(i < end) {
block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B);
__transposed_write_BC(B, C, (uint4*)(V + i*32), c_N);
++i;
}
}
template <int ALGO> __global__ void nv2_scrypt_core_kernelA_LG(uint32_t *g_idata, int begin, int end, unsigned int LOOKUP_GAP)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x / warpSize * warpSize;
g_idata += 32 * offset;
uint32_t * V = c_V[offset / warpSize];
uint4 B[4], C[4];
int i = begin;
if(i == 0) {
__transposed_read_BC((uint4*)g_idata, B, C, 1, 0);
__transposed_write_BC(B, C, (uint4*)V, c_spacing);
++i;
} else {
int pos = (i-1)/LOOKUP_GAP, loop = (i-1)-pos*LOOKUP_GAP;
__transposed_read_BC((uint4*)(V + pos*32), B, C, c_spacing, 0);
while(loop--) { block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B); }
}
while(i < end) {
block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B);
if (i % LOOKUP_GAP == 0)
__transposed_write_BC(B, C, (uint4*)(V + (i/LOOKUP_GAP)*32), c_spacing);
++i;
}
}
template <int ALGO> __global__ void nv2_scrypt_core_kernelB(uint32_t *g_odata, int begin, int end)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x / warpSize * warpSize;
g_odata += 32 * offset;
uint32_t * V = c_V[offset / warpSize];
uint4 B[4], C[4];
if(begin == 0) {
__transposed_read_BC((uint4*)V, B, C, c_N, c_N_1);
block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B);
} else
__transposed_read_BC((uint4*)g_odata, B, C, 1, 0);
for (int i = begin; i < end; i++) {
int slot = C[0].x & c_N_1;
__transposed_xor_BC((uint4*)(V), B, C, c_N, slot);
block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B);
}
__transposed_write_BC(B, C, (uint4*)(g_odata), 1);
}
template <int ALGO> __global__ void nv2_scrypt_core_kernelB_LG(uint32_t *g_odata, int begin, int end, unsigned int LOOKUP_GAP)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x / warpSize * warpSize;
g_odata += 32 * offset;
uint32_t * V = c_V[offset / warpSize];
uint4 B[4], C[4];
if(begin == 0) {
int pos = c_N_1/LOOKUP_GAP, loop = 1 + (c_N_1-pos*LOOKUP_GAP);
__transposed_read_BC((uint4*)V, B, C, c_spacing, pos);
while(loop--) { block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B); }
} else {
__transposed_read_BC((uint4*)g_odata, B, C, 1, 0);
}
for (int i = begin; i < end; i++) {
int slot = C[0].x & c_N_1;
int pos = slot/LOOKUP_GAP, loop = slot-pos*LOOKUP_GAP;
uint4 b[4], c[4]; __transposed_read_BC((uint4*)(V), b, c, c_spacing, pos);
while(loop--) { block_mixer<ALGO>(b, c); block_mixer<ALGO>(c, b); }
#pragma unroll 4
for(int n = 0; n < 4; n++) { B[n] ^= b[n]; C[n] ^= c[n]; }
block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B);
}
__transposed_write_BC(B, C, (uint4*)(g_odata), 1);
}
#endif /* prevent SM 2 */