mirror of https://github.com/GOSTSec/ccminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
262 lines
7.3 KiB
262 lines
7.3 KiB
#include <stdio.h> |
|
#include <stdint.h> |
|
#include <string.h> |
|
#include <sys/time.h> |
|
#include <unistd.h> |
|
|
|
#include <cuda.h> |
|
#include <cuda_runtime.h> |
|
|
|
#include "cryptonight.h" |
|
|
|
#ifdef WIN32 |
|
int cn_bfactor = 6; |
|
int cn_bsleep = 100; |
|
#else |
|
int cn_bfactor = 0; |
|
int cn_bsleep = 0; |
|
#endif |
|
|
|
#include "cn_aes.cuh" |
|
|
|
__device__ __forceinline__ uint64_t cuda_mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi) |
|
{ |
|
*product_hi = __umul64hi(multiplier, multiplicand); |
|
return(multiplier * multiplicand); |
|
} |
|
|
|
__global__ |
|
void cryptonight_core_gpu_phase1(int threads, uint32_t * __restrict__ long_state, uint32_t * __restrict__ ctx_state, uint32_t * __restrict__ ctx_key1) |
|
{ |
|
__shared__ uint32_t sharedMemory[1024]; |
|
|
|
cn_aes_gpu_init(sharedMemory); |
|
|
|
const int thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 3; |
|
const int sub = (threadIdx.x & 7) << 2; |
|
|
|
if(thread < threads) |
|
{ |
|
uint32_t key[40], text[4]; |
|
|
|
MEMCPY8(key, ctx_key1 + thread * 40, 20); |
|
MEMCPY8(text, ctx_state + thread * 50 + sub + 16, 2); |
|
|
|
__syncthreads(); |
|
for(int i = 0; i < 0x80000; i += 32) |
|
{ |
|
cn_aes_pseudo_round_mut(sharedMemory, text, key); |
|
MEMCPY8(&long_state[(thread << 19) + sub + i], text, 2); |
|
} |
|
} |
|
} |
|
|
|
__global__ |
|
void cryptonight_core_gpu_phase2(int threads, int bfactor, int partidx, uint32_t * __restrict__ d_long_state, uint32_t * __restrict__ d_ctx_a, uint32_t * __restrict__ d_ctx_b) |
|
{ |
|
__shared__ uint32_t sharedMemory[1024]; |
|
|
|
cn_aes_gpu_init(sharedMemory); |
|
|
|
__syncthreads(); |
|
|
|
#if __CUDA_ARCH__ >= 300 |
|
|
|
const int thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 2; |
|
const int sub = threadIdx.x & 3; |
|
|
|
if(thread < threads) |
|
{ |
|
const int batchsize = ITER >> (2 + bfactor); |
|
const int start = partidx * batchsize; |
|
const int end = start + batchsize; |
|
uint32_t * __restrict__ long_state = &d_long_state[thread << 19]; |
|
uint32_t * __restrict__ ctx_a = d_ctx_a + thread * 4; |
|
uint32_t * __restrict__ ctx_b = d_ctx_b + thread * 4; |
|
uint32_t a, b, c, x[4]; |
|
uint32_t t1[4], t2[4], res; |
|
uint64_t reshi, reslo; |
|
int j; |
|
|
|
a = ctx_a[sub]; |
|
b = ctx_b[sub]; |
|
|
|
#pragma unroll 8 |
|
for(int i = start; i < end; ++i) |
|
{ |
|
//j = ((uint32_t *)a)[0] & 0x1FFFF0; |
|
j = (__shfl((int)a, 0, 4) & 0x1FFFF0) >> 2; |
|
|
|
//cn_aes_single_round(sharedMemory, &long_state[j], c, a); |
|
x[0] = long_state[j + sub]; |
|
x[1] = __shfl((int)x[0], sub + 1, 4); |
|
x[2] = __shfl((int)x[0], sub + 2, 4); |
|
x[3] = __shfl((int)x[0], sub + 3, 4); |
|
c = a ^ |
|
t_fn0(x[0] & 0xff) ^ |
|
t_fn1((x[1] >> 8) & 0xff) ^ |
|
t_fn2((x[2] >> 16) & 0xff) ^ |
|
t_fn3((x[3] >> 24) & 0xff); |
|
|
|
//XOR_BLOCKS_DST(c, b, &long_state[j]); |
|
long_state[j + sub] = c ^ b; |
|
|
|
//MUL_SUM_XOR_DST(c, a, &long_state[((uint32_t *)c)[0] & 0x1FFFF0]); |
|
j = (__shfl((int)c, 0, 4) & 0x1FFFF0) >> 2; |
|
#pragma unroll |
|
for(int k = 0; k < 2; k++) |
|
t1[k] = __shfl((int)c, k, 4); |
|
#pragma unroll |
|
for(int k = 0; k < 4; k++) |
|
t2[k] = __shfl((int)a, k, 4); |
|
asm( |
|
"mad.lo.u64 %0, %2, %3, %4;\n\t" |
|
"mad.hi.u64 %1, %2, %3, %5;\n\t" |
|
: "=l"(reslo), "=l"(reshi) |
|
: "l"(((uint64_t *)t1)[0]), "l"(((uint64_t *)long_state)[j >> 1]), "l"(((uint64_t *)t2)[1]), "l"(((uint64_t *)t2)[0])); |
|
res = (sub & 2 ? reslo : reshi) >> (sub & 1 ? 32 : 0); |
|
a = long_state[j + sub] ^ res; |
|
long_state[j + sub] = res; |
|
|
|
//j = ((uint32_t *)a)[0] & 0x1FFFF0; |
|
j = (__shfl((int)a, 0, 4) & 0x1FFFF0) >> 2; |
|
|
|
//cn_aes_single_round(sharedMemory, &long_state[j], b, a); |
|
x[0] = long_state[j + sub]; |
|
x[1] = __shfl((int)x[0], sub + 1, 4); |
|
x[2] = __shfl((int)x[0], sub + 2, 4); |
|
x[3] = __shfl((int)x[0], sub + 3, 4); |
|
b = a ^ |
|
t_fn0(x[0] & 0xff) ^ |
|
t_fn1((x[1] >> 8) & 0xff) ^ |
|
t_fn2((x[2] >> 16) & 0xff) ^ |
|
t_fn3((x[3] >> 24) & 0xff); |
|
|
|
//XOR_BLOCKS_DST(b, c, &long_state[j]); |
|
long_state[j + sub] = c ^ b; |
|
|
|
//MUL_SUM_XOR_DST(b, a, &long_state[((uint32_t *)b)[0] & 0x1FFFF0]); |
|
j = (__shfl((int)b, 0, 4) & 0x1FFFF0) >> 2; |
|
|
|
#pragma unroll |
|
for(int k = 0; k < 2; k++) |
|
t1[k] = __shfl((int)b, k, 4); |
|
|
|
#pragma unroll |
|
for(int k = 0; k < 4; k++) |
|
t2[k] = __shfl((int)a, k, 4); |
|
asm( |
|
"mad.lo.u64 %0, %2, %3, %4;\n\t" |
|
"mad.hi.u64 %1, %2, %3, %5;\n\t" |
|
: "=l"(reslo), "=l"(reshi) |
|
: "l"(((uint64_t *)t1)[0]), "l"(((uint64_t *)long_state)[j >> 1]), "l"(((uint64_t *)t2)[1]), "l"(((uint64_t *)t2)[0])); |
|
res = (sub & 2 ? reslo : reshi) >> (sub & 1 ? 32 : 0); |
|
a = long_state[j + sub] ^ res; |
|
long_state[j + sub] = res; |
|
} |
|
|
|
if(bfactor > 0) |
|
{ |
|
ctx_a[sub] = a; |
|
ctx_b[sub] = b; |
|
} |
|
} |
|
|
|
#else // __CUDA_ARCH__ < 300 |
|
|
|
const int thread = blockDim.x * blockIdx.x + threadIdx.x; |
|
|
|
if(thread < threads) |
|
{ |
|
const int batchsize = ITER >> (2 + bfactor); |
|
const int start = partidx * batchsize; |
|
const int end = start + batchsize; |
|
uint32_t * __restrict__ long_state = &d_long_state[thread << 19]; |
|
uint32_t * __restrict__ ctx_a = d_ctx_a + thread * 4; |
|
uint32_t * __restrict__ ctx_b = d_ctx_b + thread * 4; |
|
uint32_t a[4], b[4], c[4]; |
|
int j; |
|
|
|
MEMCPY8(a, ctx_a, 2); |
|
MEMCPY8(b, ctx_b, 2); |
|
|
|
for(int i = start; i < end; ++i) |
|
{ |
|
j = (a[0] & 0x1FFFF0) >> 2; |
|
cn_aes_single_round(sharedMemory, &long_state[j], c, a); |
|
XOR_BLOCKS_DST(c, b, &long_state[j]); |
|
MUL_SUM_XOR_DST(c, a, (uint8_t *)&long_state[(c[0] & 0x1FFFF0) >> 2]); |
|
j = (a[0] & 0x1FFFF0) >> 2; |
|
cn_aes_single_round(sharedMemory, &long_state[j], b, a); |
|
XOR_BLOCKS_DST(b, c, &long_state[j]); |
|
MUL_SUM_XOR_DST(b, a, &long_state[(b[0] & 0x1FFFF0) >> 2]); |
|
} |
|
|
|
if(bfactor > 0) |
|
{ |
|
MEMCPY8(ctx_a, a, 2); |
|
MEMCPY8(ctx_b, b, 2); |
|
} |
|
} |
|
|
|
#endif // __CUDA_ARCH__ >= 300 |
|
} |
|
|
|
__global__ |
|
void cryptonight_core_gpu_phase3(int threads, const uint32_t * __restrict__ long_state, uint32_t * __restrict__ d_ctx_state, uint32_t * __restrict__ d_ctx_key2) |
|
{ |
|
__shared__ uint32_t sharedMemory[1024]; |
|
|
|
cn_aes_gpu_init(sharedMemory); |
|
|
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 3; |
|
int sub = (threadIdx.x & 7) << 2; |
|
|
|
if(thread < threads) |
|
{ |
|
uint32_t key[40], text[4]; |
|
MEMCPY8(key, d_ctx_key2 + thread * 40, 20); |
|
MEMCPY8(text, d_ctx_state + thread * 50 + sub + 16, 2); |
|
|
|
__syncthreads(); |
|
for(int i = 0; i < 0x80000; i += 32) |
|
{ |
|
#pragma unroll |
|
for(int j = 0; j < 4; ++j) |
|
text[j] ^= long_state[(thread << 19) + sub + i + j]; |
|
|
|
cn_aes_pseudo_round_mut(sharedMemory, text, key); |
|
} |
|
|
|
MEMCPY8(d_ctx_state + thread * 50 + sub + 16, text, 2); |
|
} |
|
} |
|
|
|
__host__ |
|
void cryptonight_core_cpu_hash(int thr_id, int blocks, int threads, uint32_t *d_long_state, uint32_t *d_ctx_state, uint32_t *d_ctx_a, uint32_t *d_ctx_b, uint32_t *d_ctx_key1, uint32_t *d_ctx_key2) |
|
{ |
|
dim3 grid(blocks); |
|
dim3 block(threads); |
|
dim3 block4(threads << 2); |
|
dim3 block8(threads << 3); |
|
|
|
const int bfactor = cn_bfactor; // device_bfactor[thr_id]; |
|
const int bsleep = cn_bsleep; //device_bsleep[thr_id]; |
|
|
|
int i, partcount = 1 << bfactor; |
|
int dev_id = device_map[thr_id]; |
|
|
|
cryptonight_core_gpu_phase1 <<<grid, block8 >>>(blocks*threads, d_long_state, d_ctx_state, d_ctx_key1); |
|
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__); |
|
if(partcount > 1) usleep(bsleep); |
|
|
|
for(i = 0; i < partcount; i++) |
|
{ |
|
cryptonight_core_gpu_phase2 <<<grid, (device_sm[dev_id] >= 300 ? block4 : block)>>>(blocks*threads, bfactor, i, d_long_state, d_ctx_a, d_ctx_b); |
|
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__); |
|
if(partcount > 1) usleep(bsleep); |
|
} |
|
|
|
cryptonight_core_gpu_phase3 <<<grid, block8 >>>(blocks*threads, d_long_state, d_ctx_state, d_ctx_key2); |
|
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__); |
|
}
|
|
|