mirror of https://github.com/GOSTSec/ccminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
494 lines
13 KiB
494 lines
13 KiB
/** |
|
* Blake-256 Cuda Kernel (Tested on SM 5.0) |
|
* |
|
* Tanguy Pruvot - Aug. 2014 |
|
*/ |
|
|
|
#include "miner.h" |
|
|
|
extern "C" { |
|
#include "sph/sph_blake.h" |
|
#include <stdint.h> |
|
#include <memory.h> |
|
} |
|
|
|
/* hash by cpu with blake 256 */ |
|
extern "C" void blake32hash(void *output, const void *input) |
|
{ |
|
unsigned char hash[64]; |
|
sph_blake256_context ctx; |
|
sph_blake256_init(&ctx); |
|
sph_blake256(&ctx, input, 80); |
|
sph_blake256_close(&ctx, hash); |
|
memcpy(output, hash, 32); |
|
} |
|
|
|
#include "cuda_helper.h" |
|
|
|
#if __CUDA_ARCH__ < 350 |
|
// Kepler (Compute 3.0) + Host |
|
#define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n)))) |
|
#else |
|
// Kepler (Compute 3.5 / 5.0) |
|
#define ROTR32(x, n) __funnelshift_r( (x), (x), (n) ) |
|
#endif |
|
|
|
// in cpu-miner.c |
|
extern bool opt_benchmark; |
|
extern bool opt_debug; |
|
extern int device_map[8]; |
|
|
|
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); |
|
|
|
// shared for 8 threads of addresses (cudaMalloc) |
|
uint32_t* d_hash[8]; |
|
|
|
__constant__ |
|
static uint32_t pTarget[8]; |
|
|
|
__constant__ |
|
static uint32_t c_PaddedMessage80[32]; // padded message (80 bytes + padding) |
|
static uint32_t *d_resNounce[8]; |
|
static uint32_t *h_resNounce[8]; |
|
|
|
__constant__ |
|
static uint8_t c_sigma[16][16]; |
|
const uint8_t host_sigma[16][16] = |
|
{ |
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
|
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, |
|
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, |
|
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, |
|
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, |
|
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, |
|
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, |
|
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, |
|
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, |
|
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, |
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
|
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, |
|
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, |
|
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, |
|
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, |
|
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } |
|
}; |
|
|
|
__device__ __constant__ |
|
static const uint32_t c_IV256[8] = { |
|
SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85), |
|
SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A), |
|
SPH_C32(0x510E527F), SPH_C32(0x9B05688C), |
|
SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19) |
|
}; |
|
|
|
__device__ __constant__ |
|
|
|
static const uint32_t c_u256[16] = { |
|
SPH_C32(0x243F6A88), SPH_C32(0x85A308D3), |
|
SPH_C32(0x13198A2E), SPH_C32(0x03707344), |
|
SPH_C32(0xA4093822), SPH_C32(0x299F31D0), |
|
SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89), |
|
SPH_C32(0x452821E6), SPH_C32(0x38D01377), |
|
SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C), |
|
SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD), |
|
SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917) |
|
}; |
|
|
|
#if 0 |
|
#define GS(m0, m1, c0, c1, a, b, c, d) do { \ |
|
a = SPH_T32(a + b + (m0 ^ c1)); \ |
|
d = SPH_ROTR32(d ^ a, 16); \ |
|
c = SPH_T32(c + d); \ |
|
b = SPH_ROTR32(b ^ c, 12); \ |
|
a = SPH_T32(a + b + (m1 ^ c0)); \ |
|
d = SPH_ROTR32(d ^ a, 8); \ |
|
c = SPH_T32(c + d); \ |
|
b = SPH_ROTR32(b ^ c, 7); \ |
|
} while (0) |
|
|
|
#define ROUND_S(r) do { \ |
|
GS(Mx(r, 0x0), Mx(r, 0x1), CSx(r, 0x0), CSx(r, 0x1), v[0], v[4], v[0x8], v[0xC]); \ |
|
GS(Mx(r, 0x2), Mx(r, 0x3), CSx(r, 0x2), CSx(r, 0x3), v[1], v[5], v[0x9], v[0xD]); \ |
|
GS(Mx(r, 0x4), Mx(r, 0x5), CSx(r, 0x4), CSx(r, 0x5), v[2], v[6], v[0xA], v[0xE]); \ |
|
GS(Mx(r, 0x6), Mx(r, 0x7), CSx(r, 0x6), CSx(r, 0x7), v[3], v[7], v[0xB], v[0xF]); \ |
|
GS(Mx(r, 0x8), Mx(r, 0x9), CSx(r, 0x8), CSx(r, 0x9), v[0], v[5], v[0xA], v[0xF]); \ |
|
GS(Mx(r, 0xA), Mx(r, 0xB), CSx(r, 0xA), CSx(r, 0xB), v[1], v[6], v[0xB], v[0xC]); \ |
|
GS(Mx(r, 0xC), Mx(r, 0xD), CSx(r, 0xC), CSx(r, 0xD), v[2], v[7], v[0x8], v[0xD]); \ |
|
GS(Mx(r, 0xE), Mx(r, 0xF), CSx(r, 0xE), CSx(r, 0xF), v[3], v[4], v[0x9], v[0xE]); \ |
|
} while (0) |
|
#endif |
|
|
|
#define GS(a,b,c,d,e) { \ |
|
v[a] += (m[sigma[i][e]] ^ u256[sigma[i][e+1]]) + v[b]; \ |
|
v[d] = ROTR32(v[d] ^ v[a], 16); \ |
|
v[c] += v[d]; \ |
|
v[b] = ROTR32(v[b] ^ v[c], 12); \ |
|
\ |
|
v[a] += (m[sigma[i][e+1]] ^ u256[sigma[i][e]]) + v[b]; \ |
|
v[d] = ROTR32(v[d] ^ v[a], 8); \ |
|
v[c] += v[d]; \ |
|
v[b] = ROTR32(v[b] ^ v[c], 7); \ |
|
} |
|
|
|
__device__ static |
|
void blake256_compress(uint32_t *h, uint32_t *block, uint8_t ((*sigma)[16]), const uint32_t *u256, const uint32_t T0, uint8_t nullt = 1) |
|
{ |
|
uint32_t /* __align__(8) */ v[16]; |
|
uint32_t /* __align__(8) */ m[16]; |
|
|
|
//#pragma unroll |
|
for (int i = 0; i < 16; ++i) { |
|
m[i] = cuda_swab32(block[i]); |
|
//m[i] = block[i]; |
|
} |
|
|
|
#pragma unroll |
|
for(int i = 0; i < 8; i++) |
|
v[i] = h[i]; |
|
|
|
v[ 8] = u256[0]; |
|
v[ 9] = u256[1]; |
|
v[10] = u256[2]; |
|
v[11] = u256[3]; |
|
|
|
v[12] = u256[4] ^ T0; |
|
v[13] = u256[5] ^ T0; |
|
v[14] = u256[6]; |
|
v[15] = u256[7]; |
|
|
|
// on a 80-bytes null buffer : |
|
// first : v = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, ...} |
|
// second : v = {0xb5bfb2f9, 0x14cfcc63, 0xb85c549c, 0xc9b4184e, ..., 0x299f3350, 0x082efa98, 0xec4e6c89} |
|
|
|
//#pragma unroll |
|
for (int i = 0; i < 14; i++) { |
|
/* column step */ |
|
GS(0, 4, 0x8, 0xC, 0); |
|
GS(1, 5, 0x9, 0xD, 2); |
|
GS(2, 6, 0xA, 0xE, 4); |
|
GS(3, 7, 0xB, 0xF, 6); |
|
/* diagonal step */ |
|
GS(0, 5, 0xA, 0xF, 0x8); |
|
GS(1, 6, 0xB, 0xC, 0xA); |
|
GS(2, 7, 0x8, 0xD, 0xC); |
|
GS(3, 4, 0x9, 0xE, 0xE); |
|
} |
|
|
|
//#pragma unroll 16 |
|
for(int i = 0; i < 16; i++) |
|
h[i % 8] ^= v[i]; |
|
|
|
//second H0 = 0x0c7b1594 ... H7 = 0x9051b305 |
|
} |
|
|
|
#if __CUDA_ARCH__ >= 200 |
|
#if (__NV_POINTER_SIZE == 64) |
|
# define SZCT uint64_t |
|
#else |
|
# define SZCT uint32_t |
|
#endif |
|
extern __device__ __device_builtin__ void __nvvm_memset(uint8_t *, unsigned char, SZCT, int); |
|
#endif |
|
|
|
__global__ |
|
void blake256_gpu_hash_80(int threads, uint32_t startNounce, void *outputHash) |
|
{ |
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
if (thread < threads) |
|
{ |
|
uint32_t /* __align__(16) */ h[8]; |
|
uint32_t /* __align__(16) */ msg[16]; |
|
const uint32_t nounce = startNounce + thread; |
|
|
|
#pragma unroll |
|
for(int i=0; i<8; i++) |
|
h[i] = c_IV256[i]; |
|
|
|
blake256_compress(h, c_PaddedMessage80, c_sigma, c_u256, 0x200); /* 512 = 0x200 */ |
|
|
|
// ------ Close: Bytes 64 to 80 ------ |
|
|
|
#if 0 /* __CUDA_ARCH__ >= 200 */ |
|
__nvvm_memset((uint8_t*)(&msg[4]), 0, sizeof(msg)-16, 16); |
|
#else |
|
msg[5] = 0; |
|
msg[6] = 0; |
|
msg[7] = 0; |
|
msg[8] = 0; |
|
msg[9] = 0; |
|
msg[10] = 0; |
|
msg[11] = 0; |
|
msg[12] = 0; |
|
msg[14] = 0; |
|
#endif |
|
msg[0] = c_PaddedMessage80[16]; |
|
msg[1] = c_PaddedMessage80[17]; |
|
msg[2] = c_PaddedMessage80[18]; |
|
msg[3] = cuda_swab32(nounce); // here or at 80 ? |
|
|
|
msg[4] = 0x80; // uchar[16] after buffer |
|
msg[13] = 0x01000000; //((uint8_t*)msg)[55] = 1; // uchar[17 to 55] |
|
msg[15] = 0x80020000; // 60-63 0x280 |
|
|
|
//h => {0xb5bfb2f9, 0x14cfcc63, 0xb85c549c, 0xc9b4184e, 0x67dfc6ce, 0x29e9904b, 0xd59ee74e, 0xfaa9c653} |
|
//msg {0, 0, 0, 0, 0x80, 0...} |
|
|
|
blake256_compress(h, msg, c_sigma, c_u256, 0x280); // or 0x80 |
|
//h => {0x0c7b1594, 0x52328517, 0x463db487, 0xdf5e39b7, 0x1322afaf, 0x14ed562c, 0xe9d18d7d, 0x9051b305} |
|
|
|
uint32_t *outHash = (uint32_t*) outputHash + 16*thread; // 16 = 4 x sizeof(uint32) |
|
//#pragma unroll |
|
for (int i=0; i < 8; i++) { |
|
outHash[i] = cuda_swab32(h[i]); |
|
} |
|
} |
|
} |
|
|
|
__host__ |
|
void blake256_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, uint32_t *d_outputHash, int order) |
|
{ |
|
const int threadsperblock = 256; |
|
|
|
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
|
dim3 block(threadsperblock); |
|
|
|
size_t shared_size = 0; |
|
|
|
blake256_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNounce, d_outputHash); |
|
|
|
MyStreamSynchronize(NULL, order, thr_id); |
|
} |
|
|
|
__global__ |
|
void gpu_check_hash_64(int threads, uint32_t startNounce, uint32_t *g_nonceVector, uint32_t *g_hash, uint32_t *resNounce) |
|
{ |
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
if (thread < threads) |
|
{ |
|
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); |
|
|
|
int hashPosition = nounce - startNounce; |
|
uint32_t *inpHash = &g_hash[16 * hashPosition]; |
|
uint32_t hash[8]; |
|
|
|
#pragma unroll 8 |
|
for (int i=0; i < 8; i++) |
|
hash[i] = inpHash[i]; |
|
|
|
int i, position = -1; |
|
bool rc = true; |
|
|
|
#pragma unroll 8 |
|
for (i = 7; i >= 0; i--) { |
|
if (hash[i] > pTarget[i] && position < i) { |
|
position = i; |
|
rc = false; |
|
} |
|
if (hash[i] < pTarget[i] && position < i) { |
|
position = i; |
|
rc = true; |
|
} |
|
} |
|
|
|
if(rc && resNounce[0] > nounce) |
|
resNounce[0] = nounce; |
|
} |
|
} |
|
|
|
__host__ |
|
uint32_t cpu_check_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_inputHash, int order) |
|
{ |
|
uint32_t result = 0xffffffff; |
|
const int threadsperblock = 256; |
|
|
|
cudaMemset(d_resNounce[thr_id], 0xff, sizeof(uint32_t)); |
|
|
|
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
|
dim3 block(threadsperblock); |
|
|
|
size_t shared_size = 0; |
|
|
|
gpu_check_hash_64 <<<grid, block, shared_size>>>(threads, startNounce, d_nonceVector, d_inputHash, d_resNounce[thr_id]); |
|
|
|
MyStreamSynchronize(NULL, order, thr_id); |
|
|
|
CUDA_SAFE_CALL(cudaMemcpy(h_resNounce[thr_id], d_resNounce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost)); |
|
|
|
// cudaMemcpy() is asynch! |
|
cudaThreadSynchronize(); |
|
result = *h_resNounce[thr_id]; |
|
|
|
return result; |
|
} |
|
|
|
__host__ |
|
void blake256_cpu_init(int thr_id) |
|
{ |
|
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_sigma, host_sigma, sizeof(host_sigma), 0, cudaMemcpyHostToDevice)); |
|
|
|
CUDA_SAFE_CALL(cudaMallocHost(&h_resNounce[thr_id], 1*sizeof(uint32_t))); |
|
CUDA_SAFE_CALL(cudaMalloc(&d_resNounce[thr_id], 1*sizeof(uint32_t))); |
|
} |
|
|
|
__host__ |
|
void blake256_cpu_setBlock_80(uint32_t *pdata, const void *ptarget) |
|
{ |
|
uint32_t PaddedMessage[32]; |
|
memcpy(PaddedMessage, pdata, 80); |
|
memset(&PaddedMessage[20], 0, 48); |
|
//for (int i=0; i<20; i++) |
|
// PaddedMessage[i] = cuda_swab32(pdata[i]); |
|
|
|
CUDA_SAFE_CALL(cudaMemcpyToSymbol(pTarget, ptarget, 32, 0, cudaMemcpyHostToDevice)); |
|
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_PaddedMessage80, PaddedMessage, sizeof(PaddedMessage), 0, cudaMemcpyHostToDevice)); |
|
} |
|
|
|
#define NULLTEST 0 |
|
|
|
extern "C" int scanhash_blake32(int thr_id, uint32_t *pdata, const uint32_t *ptarget, |
|
uint32_t max_nonce, unsigned long *hashes_done) |
|
{ |
|
uint32_t endiandata[20]; |
|
const uint32_t first_nonce = pdata[19]; |
|
const int throughput = 256*256*2; |
|
static bool init[8] = {0,0,0,0,0,0,0,0}; |
|
|
|
if (opt_benchmark) |
|
((uint32_t*)ptarget)[7] = 0x00000f; |
|
|
|
uint32_t Htarg = ptarget[7]; |
|
|
|
if (!init[thr_id]) { |
|
CUDA_SAFE_CALL(cudaSetDevice(device_map[thr_id])); |
|
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], 16 * sizeof(uint32_t) * throughput)); |
|
|
|
blake256_cpu_init(thr_id); |
|
|
|
init[thr_id] = true; |
|
} |
|
|
|
#if NULLTEST |
|
// dev test with a null buffer 0x00000... |
|
for (int k = 0; k < 20; k++) |
|
pdata[k] = 0; |
|
uint32_t vhash[8]; |
|
blake32hash(vhash, pdata); |
|
#endif |
|
|
|
for (int k=0; k < 20; k++) |
|
be32enc(&endiandata[k], pdata[k]); |
|
|
|
blake256_cpu_setBlock_80(endiandata, (void*)ptarget); |
|
|
|
do { |
|
int order = 0; |
|
uint32_t foundNonce; |
|
|
|
// GPU |
|
blake256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++); |
|
|
|
#if NULLTEST |
|
uint32_t buf[8]; memset(buf, 0, sizeof buf); |
|
CUDA_SAFE_CALL(cudaMemcpy(buf, d_hash[thr_id], sizeof buf, cudaMemcpyDeviceToHost)); |
|
CUDA_SAFE_CALL(cudaThreadSynchronize()); |
|
//applog_hash((unsigned char*)buf); |
|
#endif |
|
foundNonce = cpu_check_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); |
|
if (foundNonce != 0xffffffff) |
|
{ |
|
uint32_t vhashcpu[8]; |
|
be32enc(&endiandata[19], foundNonce); |
|
|
|
blake32hash(vhashcpu, endiandata); |
|
|
|
if (opt_debug) |
|
applog(LOG_DEBUG, "foundNonce = %08x",foundNonce); |
|
|
|
if (vhashcpu[7] <= Htarg && fulltest(vhashcpu, ptarget)) |
|
{ |
|
pdata[19] = foundNonce; |
|
*hashes_done = pdata[19] - first_nonce + 1; |
|
return 1; |
|
} else { |
|
applog(LOG_INFO, "GPU #%d: result for nonce %08x does not validate on CPU!", thr_id, foundNonce); |
|
} |
|
} |
|
|
|
pdata[19] += throughput; |
|
|
|
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart); |
|
|
|
*hashes_done = pdata[19] - first_nonce + 1; |
|
return 0; |
|
} |
|
|
|
//#define DEBUG_ALGO |
|
|
|
__host__ |
|
int scanhash_blake256_cpu(int thr_id, uint32_t *pdata, const uint32_t *ptarget, |
|
uint32_t max_nonce, uint64_t *hashes_done) |
|
{ |
|
uint32_t n = pdata[19] - 1; |
|
const uint32_t first_nonce = pdata[19]; |
|
const uint32_t Htarg = ptarget[7]; |
|
|
|
uint32_t __align__(32) hash64[8]; |
|
uint32_t endiandata[32]; |
|
|
|
uint64_t htmax[] = { |
|
0, |
|
0xF, |
|
0xFF, |
|
0xFFF, |
|
0xFFFF, |
|
0x10000000 |
|
}; |
|
uint32_t masks[] = { |
|
0xFFFFFFFF, |
|
0xFFFFFFF0, |
|
0xFFFFFF00, |
|
0xFFFFF000, |
|
0xFFFF0000, |
|
0 |
|
}; |
|
|
|
// we need bigendian data... |
|
for (int kk=0; kk < 32; kk++) { |
|
be32enc(&endiandata[kk], ((uint32_t*)pdata)[kk]); |
|
}; |
|
#ifdef DEBUG_ALGO |
|
if (Htarg != 0) |
|
printf("[%d] Htarg=%X\n", thr_id, Htarg); |
|
#endif |
|
for (int m=0; m < 6; m++) { |
|
if (Htarg <= htmax[m]) { |
|
uint32_t mask = masks[m]; |
|
do { |
|
pdata[19] = ++n; |
|
be32enc(&endiandata[19], n); |
|
blake32hash(hash64, endiandata); |
|
#ifndef DEBUG_ALGO |
|
if ((!(hash64[7] & mask)) && fulltest(hash64, ptarget)) { |
|
*hashes_done = n - first_nonce + 1; |
|
return true; |
|
} |
|
#else |
|
if (!(n % 0x1000) && !thr_id) printf("."); |
|
if (!(hash64[7] & mask)) { |
|
printf("[%d]",thr_id); |
|
if (fulltest(hash64, ptarget)) { |
|
*hashes_done = n - first_nonce + 1; |
|
return true; |
|
} |
|
} |
|
#endif |
|
} while (n < max_nonce && !work_restart[thr_id].restart); |
|
// see blake.c if else to understand the loop on htmax => mask |
|
break; |
|
} |
|
} |
|
|
|
*hashes_done = n - first_nonce + 1; |
|
pdata[19] = n; |
|
return 0; |
|
}
|
|
|