1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-19 19:20:02 +00:00
ccminer/keccak/cuda_keccak256.cu
Tanguy Pruvot 0720797f1b Add proper keccak-256 (maxcoin)
Cleaned from djm34 repo, tuned for the 750 Ti
2014-10-17 06:46:20 +02:00

171 lines
5.7 KiB
Plaintext

#include "miner.h"
extern "C" {
#include <stdint.h>
#include <memory.h>
}
#include "cuda_helper.h"
static const uint64_t host_keccak_round_constants[24] = {
0x0000000000000001ull, 0x0000000000008082ull,
0x800000000000808aull, 0x8000000080008000ull,
0x000000000000808bull, 0x0000000080000001ull,
0x8000000080008081ull, 0x8000000000008009ull,
0x000000000000008aull, 0x0000000000000088ull,
0x0000000080008009ull, 0x000000008000000aull,
0x000000008000808bull, 0x800000000000008bull,
0x8000000000008089ull, 0x8000000000008003ull,
0x8000000000008002ull, 0x8000000000000080ull,
0x000000000000800aull, 0x800000008000000aull,
0x8000000080008081ull, 0x8000000000008080ull,
0x0000000080000001ull, 0x8000000080008008ull
};
uint32_t *d_nounce[8];
uint32_t *d_KNonce[8];
__constant__ uint32_t pTarget[8];
__constant__ uint64_t keccak_round_constants[24];
__constant__ uint64_t c_PaddedMessage80[10]; // padded message (80 bytes + padding)
static __device__ __forceinline__
void keccak_block(uint64_t *s, const uint64_t *keccak_round_constants) {
size_t i;
uint64_t t[5], u[5], v, w;
/* absorb input */
for (i = 0; i < 24; i++) {
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */
t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20];
t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21];
t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22];
t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23];
t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24];
/* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */
u[0] = t[4] ^ ROTL64(t[1], 1);
u[1] = t[0] ^ ROTL64(t[2], 1);
u[2] = t[1] ^ ROTL64(t[3], 1);
u[3] = t[2] ^ ROTL64(t[4], 1);
u[4] = t[3] ^ ROTL64(t[0], 1);
/* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */
s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0];
s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1];
s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2];
s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3];
s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4];
/* rho pi: b[..] = rotl(a[..], ..) */
v = s[ 1];
s[ 1] = ROTL64(s[ 6], 44);
s[ 6] = ROTL64(s[ 9], 20);
s[ 9] = ROTL64(s[22], 61);
s[22] = ROTL64(s[14], 39);
s[14] = ROTL64(s[20], 18);
s[20] = ROTL64(s[ 2], 62);
s[ 2] = ROTL64(s[12], 43);
s[12] = ROTL64(s[13], 25);
s[13] = ROTL64(s[19], 8);
s[19] = ROTL64(s[23], 56);
s[23] = ROTL64(s[15], 41);
s[15] = ROTL64(s[ 4], 27);
s[ 4] = ROTL64(s[24], 14);
s[24] = ROTL64(s[21], 2);
s[21] = ROTL64(s[ 8], 55);
s[ 8] = ROTL64(s[16], 45);
s[16] = ROTL64(s[ 5], 36);
s[ 5] = ROTL64(s[ 3], 28);
s[ 3] = ROTL64(s[18], 21);
s[18] = ROTL64(s[17], 15);
s[17] = ROTL64(s[11], 10);
s[11] = ROTL64(s[ 7], 6);
s[ 7] = ROTL64(s[10], 3);
s[10] = ROTL64( v, 1);
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */
v = s[ 0]; w = s[ 1]; s[ 0] ^= (~w) & s[ 2]; s[ 1] ^= (~s[ 2]) & s[ 3]; s[ 2] ^= (~s[ 3]) & s[ 4]; s[ 3] ^= (~s[ 4]) & v; s[ 4] ^= (~v) & w;
v = s[ 5]; w = s[ 6]; s[ 5] ^= (~w) & s[ 7]; s[ 6] ^= (~s[ 7]) & s[ 8]; s[ 7] ^= (~s[ 8]) & s[ 9]; s[ 8] ^= (~s[ 9]) & v; s[ 9] ^= (~v) & w;
v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w;
v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w;
v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w;
/* iota: a[0,0] ^= round constant */
s[0] ^= keccak_round_constants[i];
}
}
__global__
void keccak256_gpu_hash_80(int threads, uint32_t startNounce, void *outputHash, uint32_t *resNounce)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t nounce = startNounce + thread;
uint64_t keccak_gpu_state[25];
//#pragma unroll 25
for (int i=0; i<25; i++) {
if(i<9) {keccak_gpu_state[i] = c_PaddedMessage80[i];}
else {keccak_gpu_state[i] = 0;}
}
keccak_gpu_state[9]=REPLACE_HIWORD(c_PaddedMessage80[9],cuda_swab32(nounce));
keccak_gpu_state[10]=0x0000000000000001;
keccak_gpu_state[16]=0x8000000000000000;
keccak_block(keccak_gpu_state,keccak_round_constants);
bool rc = false;
if (keccak_gpu_state[3] <= ((uint64_t*)pTarget)[3]) {rc = true;}
if (rc == true) {
if(resNounce[0] > nounce)
resNounce[0] = nounce;
}
} //thread
}
void keccak256_cpu_init(int thr_id, int threads)
{
CUDA_SAFE_CALL(cudaMemcpyToSymbol(keccak_round_constants,
host_keccak_round_constants,
sizeof(host_keccak_round_constants),
0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMalloc(&d_KNonce[thr_id], sizeof(uint32_t)));
CUDA_SAFE_CALL(cudaMallocHost(&d_nounce[thr_id], 1*sizeof(uint32_t)));
}
__host__
uint32_t keccak256_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, uint32_t *d_outputHash, int order)
{
uint32_t result = 0xffffffff;
cudaMemset(d_KNonce[thr_id], 0xff, sizeof(uint32_t));
const int threadsperblock = 128;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 0;
keccak256_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNounce, d_outputHash, d_KNonce[thr_id]);
MyStreamSynchronize(NULL, order, thr_id);
cudaMemcpy(d_nounce[thr_id], d_KNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
cudaThreadSynchronize();
result = *d_nounce[thr_id];
return result;
}
__host__
void keccak256_setBlock_80(void *pdata,const void *pTargetIn)
{
unsigned char PaddedMessage[80];
memcpy(PaddedMessage, pdata, 80);
CUDA_SAFE_CALL(cudaMemcpyToSymbol(pTarget, pTargetIn, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_PaddedMessage80, PaddedMessage, 10*sizeof(uint64_t), 0, cudaMemcpyHostToDevice));
}