mirror of
https://github.com/GOSTSec/ccminer
synced 2025-01-25 14:04:34 +00:00
0ff75791e5
This allow to keep pdata[19] as cursor between scans, and later, to sort them.. remains... heavy, scrypt, sia...
489 lines
14 KiB
Plaintext
489 lines
14 KiB
Plaintext
/**
|
|
* Optimized Blake-256 8-rounds Cuda Kernel (Tested on SM >3.0)
|
|
* Based upon Blake-256 implementation of Tanguy Pruvot - Nov. 2014
|
|
*
|
|
* Provos Alexis - Jan. 2016
|
|
*
|
|
* Fixed CUDA 7.5 flaw
|
|
* minor code changes
|
|
* code cleanup
|
|
* increased nonces per thread
|
|
* removed SSE2 midstate computation
|
|
* Provos Alexis - Mar 2016
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <memory.h>
|
|
|
|
#include "miner.h"
|
|
|
|
extern "C" {
|
|
#include "sph/sph_blake.h"
|
|
}
|
|
|
|
#include "cuda_helper.h"
|
|
|
|
#ifdef __INTELLISENSE__
|
|
#define __byte_perm(x, y, b) x
|
|
#endif
|
|
|
|
/* threads per block and nonces per thread */
|
|
#define TPB 768
|
|
#define NPT 384
|
|
#define NBN 2
|
|
|
|
__constant__ uint32_t _ALIGN(16) d_data[21];
|
|
|
|
/* 16 gpu threads max */
|
|
static uint32_t *d_resNonce[MAX_GPUS];
|
|
static uint32_t *h_resNonce[MAX_GPUS];
|
|
static cudaStream_t streams[MAX_GPUS];
|
|
|
|
/* hash by cpu with blake 256 */
|
|
extern "C" void vanillahash(void *output, const void *input, int8_t blakerounds){
|
|
uchar hash[64];
|
|
sph_blake256_context ctx;
|
|
|
|
sph_blake256_set_rounds(blakerounds);
|
|
|
|
sph_blake256_init(&ctx);
|
|
sph_blake256(&ctx, input, 80);
|
|
sph_blake256_close(&ctx, hash);
|
|
|
|
memcpy(output, hash, 32);
|
|
}
|
|
#define GS4(a,b,c,d,x,y,a1,b1,c1,d1,x1,y1,a2,b2,c2,d2,x2,y2,a3,b3,c3,d3,x3,y3) { \
|
|
v[ a]+= (m[ x] ^ z[ y]) + v[ b]; \
|
|
v[a1]+= (m[x1] ^ z[y1]) + v[b1]; \
|
|
v[a2]+= (m[x2] ^ z[y2]) + v[b2]; \
|
|
v[a3]+= (m[x3] ^ z[y3]) + v[b3]; \
|
|
\
|
|
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); \
|
|
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \
|
|
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x1032); \
|
|
v[d3] = __byte_perm(v[d3] ^ v[a3], 0, 0x1032); \
|
|
\
|
|
v[ c]+= v[ d]; \
|
|
v[c1]+= v[d1]; \
|
|
v[c2]+= v[d2]; \
|
|
v[c3]+= v[d3]; \
|
|
\
|
|
v[ b] = ROTR32(v[ b] ^ v[ c], 12); \
|
|
v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
|
|
v[b2] = ROTR32(v[b2] ^ v[c2], 12); \
|
|
v[b3] = ROTR32(v[b3] ^ v[c3], 12); \
|
|
\
|
|
v[ a]+= (m[ y] ^ z[ x]) + v[ b]; \
|
|
v[a1]+= (m[y1] ^ z[x1]) + v[b1]; \
|
|
v[a2]+= (m[y2] ^ z[x2]) + v[b2]; \
|
|
v[a3]+= (m[y3] ^ z[x3]) + v[b3]; \
|
|
\
|
|
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); \
|
|
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \
|
|
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x0321); \
|
|
v[d3] = __byte_perm(v[d3] ^ v[a3], 0, 0x0321); \
|
|
\
|
|
v[ c]+= v[ d]; \
|
|
v[c1]+= v[d1]; \
|
|
v[c2]+= v[d2]; \
|
|
v[c3]+= v[d3]; \
|
|
\
|
|
v[ b] = ROTR32(v[ b] ^ v[ c], 7); \
|
|
v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
|
|
v[b2] = ROTR32(v[b2] ^ v[c2], 7); \
|
|
v[b3] = ROTR32(v[b3] ^ v[c3], 7); \
|
|
}
|
|
|
|
#define GS3(a,b,c,d,x,y,a1,b1,c1,d1,x1,y1,a2,b2,c2,d2,x2,y2) { \
|
|
v[ a]+= (m[ x] ^ z[ y]) + v[ b]; \
|
|
v[a1]+= (m[x1] ^ z[y1]) + v[b1]; \
|
|
v[a2]+= (m[x2] ^ z[y2]) + v[b2]; \
|
|
\
|
|
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); \
|
|
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \
|
|
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x1032); \
|
|
\
|
|
v[ c]+= v[ d]; \
|
|
v[c1]+= v[d1]; \
|
|
v[c2]+= v[d2]; \
|
|
\
|
|
v[ b] = ROTR32(v[ b] ^ v[ c], 12); \
|
|
v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
|
|
v[b2] = ROTR32(v[b2] ^ v[c2], 12); \
|
|
\
|
|
v[ a]+= (m[ y] ^ z[ x]) + v[ b]; \
|
|
v[a1]+= (m[y1] ^ z[x1]) + v[b1]; \
|
|
v[a2]+= (m[y2] ^ z[x2]) + v[b2]; \
|
|
\
|
|
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); \
|
|
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \
|
|
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x0321); \
|
|
\
|
|
v[ c]+= v[ d]; \
|
|
v[c1]+= v[d1]; \
|
|
v[c2]+= v[d2]; \
|
|
\
|
|
v[ b] = ROTR32(v[ b] ^ v[ c], 7); \
|
|
v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
|
|
v[b2] = ROTR32(v[b2] ^ v[c2], 7); \
|
|
}
|
|
|
|
#define GS2(a,b,c,d,x,y,a1,b1,c1,d1,x1,y1) { \
|
|
v[ a]+= (m[ x] ^ z[ y]) + v[ b]; \
|
|
v[a1]+= (m[x1] ^ z[y1]) + v[b1]; \
|
|
\
|
|
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); \
|
|
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \
|
|
\
|
|
v[ c]+= v[ d]; \
|
|
v[c1]+= v[d1]; \
|
|
\
|
|
v[ b] = ROTR32(v[ b] ^ v[ c], 12); \
|
|
v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
|
|
\
|
|
v[ a]+= (m[ y] ^ z[ x]) + v[ b]; \
|
|
v[a1]+= (m[y1] ^ z[x1]) + v[b1]; \
|
|
\
|
|
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); \
|
|
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \
|
|
\
|
|
v[ c]+= v[ d]; \
|
|
v[c1]+= v[d1]; \
|
|
\
|
|
v[ b] = ROTR32(v[ b] ^ v[ c], 7); \
|
|
v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
|
|
}
|
|
|
|
#define GS(a,b,c,d,x,y) { \
|
|
v[a] += (m[x] ^ z[y]) + v[b]; \
|
|
v[d] = __byte_perm(v[d] ^ v[a],0, 0x1032); \
|
|
v[c] += v[d]; \
|
|
v[b] = ROTR32(v[b] ^ v[c], 12); \
|
|
v[a] += (m[y] ^ z[x]) + v[b]; \
|
|
v[d] = __byte_perm(v[d] ^ v[a],0, 0x0321); \
|
|
v[c] += v[d]; \
|
|
v[b] = ROTR32(v[b] ^ v[c], 7); \
|
|
}
|
|
|
|
__global__ __launch_bounds__(TPB,1)
|
|
void vanilla_gpu_hash_16_8(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce,const uint64_t highTarget){
|
|
uint32_t _ALIGN(16) v[16];
|
|
uint32_t _ALIGN(16) tmp[16];
|
|
|
|
const size_t thread = blockDim.x * blockIdx.x + threadIdx.x;
|
|
const uint64_t step = gridDim.x * blockDim.x;
|
|
const uint64_t maxNonce = startNonce + threads;
|
|
|
|
const int8_t r[][16] = {
|
|
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
|
|
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
|
|
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
|
|
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }
|
|
};
|
|
const uint32_t z[16] = {
|
|
0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344, 0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89,
|
|
0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C, 0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917
|
|
};
|
|
|
|
//PREFETCH
|
|
#pragma unroll
|
|
for(int i=0;i<16;i++){
|
|
tmp[ i] = d_data[ i];
|
|
}
|
|
|
|
uint32_t m[16] = {
|
|
d_data[16], d_data[17], d_data[18], 0,
|
|
0x80000000UL, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
0, 1, 0, 640
|
|
};
|
|
|
|
const uint32_t h7 = d_data[19];
|
|
const uint32_t h6 = d_data[20];
|
|
//END OF PREFETCH
|
|
uint64_t m3 = startNonce + thread;
|
|
loopstart:
|
|
if(m3>=maxNonce)return;
|
|
m[3] = m3;
|
|
|
|
#pragma unroll
|
|
for(int i=0;i<16;i++)
|
|
v[ i] = tmp[ i];
|
|
|
|
v[ 1]+= m[3] ^ z[2];
|
|
v[13] = __byte_perm(v[13] ^ v[1],0, 0x0321);
|
|
v[ 9]+= v[13];
|
|
v[ 5] = ROTR32(v[5] ^ v[9], 7);
|
|
v[ 0]+= v[5];
|
|
v[15] = __byte_perm(v[15] ^ v[0],0, 0x1032);
|
|
|
|
v[10]+= v[15];
|
|
v[ 5] = ROTR32(v[5] ^ v[10], 12);
|
|
v[ 0]+= z[8] + v[5];
|
|
v[15] = __byte_perm(v[15] ^ v[0],0, 0x0321);
|
|
v[10]+= v[15];
|
|
v[ 5] = ROTR32(v[5] ^ v[10], 7);
|
|
|
|
GS3( 1, 6,11,12,10,11, 2, 7, 8,13,12,13, 3, 4, 9,14,14,15);
|
|
|
|
#pragma unroll
|
|
for(int i=0;i<6;i++){
|
|
GS4(0, 4, 8,12,r[i][ 0],r[i][ 1], 1, 5, 9,13,r[i][ 2],r[i][ 3], 2, 6,10,14,r[i][ 4],r[i][ 5], 3, 7,11,15,r[i][ 6],r[i][ 7]);
|
|
GS4(0, 5,10,15,r[i][ 8],r[i][ 9], 1, 6,11,12,r[i][10],r[i][11], 2, 7, 8,13,r[i][12],r[i][13], 3, 4, 9,14,r[i][14],r[i][15]);
|
|
}
|
|
GS4(0, 4, 8,12,r[6][ 0],r[6][ 1], 1, 5, 9,13,r[6][ 2],r[6][ 3], 2, 6,10,14,r[6][ 4],r[6][ 5], 3, 7,11,15,r[6][ 6],r[6][ 7]);
|
|
|
|
v[ 0] += (m[ 5] ^ z[0]) + v[5];
|
|
v[ 2] += (m[ 8] ^ z[6]) + v[7];
|
|
v[13] = __byte_perm(v[13] ^ v[2],0, 0x1032);
|
|
v[15] = __byte_perm(v[15] ^ v[0],0, 0x1032);
|
|
|
|
v[ 8] += v[13];
|
|
v[10] += v[15];
|
|
|
|
v[ 5] = ROTR32(v[ 5] ^ v[10], 12);
|
|
v[ 7] = ROTR32(v[ 7] ^ v[ 8], 12);
|
|
|
|
v[ 0] += (m[ 0] ^ z[5]) + v[5];
|
|
v[ 2] += (m[ 6] ^ z[8]) + v[7];
|
|
|
|
v[15] = __byte_perm(v[15] ^ v[ 0],0, 0x0321);
|
|
v[13] = __byte_perm(v[13] ^ v[ 2],0, 0x0321);
|
|
|
|
v[8] += v[13];
|
|
v[7] = ROTR32(v[7] ^ v[8], 7);
|
|
|
|
// only compute h6 & 7
|
|
if((v[15]^h7)==v[7]){
|
|
v[ 1] += (m[15] ^ z[ 4]) + v[6];
|
|
v[ 3] += (m[2] ^ z[10]) + v[4];
|
|
v[12] = __byte_perm(v[12] ^ v[ 1],0, 0x1032);
|
|
v[14] = __byte_perm(v[14] ^ v[3],0, 0x1032);
|
|
v[11] += v[12];
|
|
v[ 9] += v[14];
|
|
v[ 6] = ROTR32(v[ 6] ^ v[11], 12);
|
|
|
|
v[ 1] += (m[ 4] ^ z[15]) + v[ 6];
|
|
v[ 3] += (m[10] ^ z[ 2]) + ROTR32(v[ 4] ^ v[ 9],12);
|
|
v[12] = __byte_perm(v[12] ^ v[ 1],0, 0x0321);
|
|
v[14] = __byte_perm(v[14] ^ v[ 3],0, 0x0321);
|
|
|
|
v[11] += v[12];
|
|
v[ 6] = ROTR32(v[ 6] ^ v[11], 7);
|
|
|
|
if(cuda_swab32(h6^v[6]^v[14]) <= highTarget) {
|
|
#if NBN == 2
|
|
/* keep the smallest nonce, + extra one if found */
|
|
if (m[3] < resNonce[0]){
|
|
resNonce[1] = resNonce[0];
|
|
resNonce[0] = m[3];
|
|
}
|
|
else
|
|
resNonce[1] = m[3];
|
|
#else
|
|
resNonce[0] = m[3];
|
|
#endif
|
|
return; //<-- this may cause a problem on extranonce if the extranonce is on position current_nonce + X * step where X=[1,2,3..,N]
|
|
}
|
|
}
|
|
m3+=step;
|
|
goto loopstart;
|
|
}
|
|
|
|
__host__
|
|
void vanilla_cpu_setBlock_16(const int thr_id,const uint32_t* endiandata, uint32_t *penddata){
|
|
|
|
const uint32_t _ALIGN(64) z[16] = {
|
|
SPH_C32(0x243F6A88), SPH_C32(0x85A308D3), SPH_C32(0x13198A2E), SPH_C32(0x03707344),
|
|
SPH_C32(0xA4093822), SPH_C32(0x299F31D0), SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89),
|
|
SPH_C32(0x452821E6), SPH_C32(0x38D01377), SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C),
|
|
SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD), SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917)
|
|
};
|
|
uint32_t _ALIGN(64) h[22];
|
|
|
|
sph_blake256_context ctx;
|
|
|
|
sph_blake256_set_rounds(8);
|
|
|
|
sph_blake256_init(&ctx);
|
|
sph_blake256(&ctx, endiandata, 64);
|
|
|
|
h[ 0] = ctx.H[0]; h[ 1] = ctx.H[1];
|
|
h[ 2] = ctx.H[2]; h[21] = ctx.H[3];
|
|
h[ 4] = ctx.H[4]; h[20] = ctx.H[5];
|
|
h[19] = ctx.H[6]; h[16] = ctx.H[7];
|
|
|
|
uint32_t tmp = h[20];
|
|
h[20] = h[19];
|
|
h[19] = h[16];
|
|
h[16] = penddata[ 0];
|
|
h[17] = penddata[ 1];
|
|
h[18] = penddata[ 2];
|
|
h[12] = z[ 4] ^ 640;
|
|
h[ 8] = z[ 0];
|
|
|
|
h[ 0] += (h[16] ^ z[ 1]) + h[ 4];
|
|
h[12] = SPH_ROTR32(h[12] ^ h[0],16);
|
|
h[ 8] += h[12];
|
|
h[ 4] = SPH_ROTR32(h[ 4] ^ h[ 8], 12);
|
|
h[ 0] += (h[17] ^ z[ 0]) + h[ 4];
|
|
h[12] = SPH_ROTR32(h[12] ^ h[0],8);
|
|
h[ 8] += h[12];
|
|
h[ 4] = SPH_ROTR32(h[ 4] ^ h[ 8], 7);
|
|
|
|
h[1] += (h[18] ^ z[ 3]) + tmp;
|
|
|
|
h[13] = SPH_ROTR32(z[ 5] ^ 640 ^ h[1],16);
|
|
h[ 5] = ROTR32(tmp ^ (z[ 1] + h[13]), 12);
|
|
|
|
h[ 1] += h[ 5];
|
|
h[ 2] += (0x80000000UL ^ z[ 5]) + h[20];
|
|
|
|
h[14] = SPH_ROTR32(z[ 6] ^ h[2], 16);
|
|
h[ 6] = z[ 2] + h[14];
|
|
h[ 6] = SPH_ROTR32(h[20] ^ h[ 6], 12);
|
|
|
|
h[21] += z[ 7] + h[19];
|
|
h[ 0] += z[ 9];
|
|
|
|
h[ 2] += z[ 4] + h[ 6];
|
|
|
|
h[ 9] = z[ 1] + h[13];
|
|
h[10] = z[ 2] + h[14];
|
|
|
|
h[14] = SPH_ROTR32(h[14] ^ h[2],8); //0x0321
|
|
h[10]+=h[14];
|
|
|
|
h[ 6] = SPH_ROTR32(h[ 6] ^ h[10],7);
|
|
h[15] = SPH_ROTR32(z[ 7] ^ h[21],16);
|
|
|
|
h[11] = z[ 3] + h[15];
|
|
h[ 7] = SPH_ROTR32(h[19] ^ h[11], 12);
|
|
h[ 3] = h[21] + h[ 7] + z[ 6];
|
|
|
|
h[15] = SPH_ROTR32(h[15] ^ h[ 3],8);
|
|
h[11]+= h[15];
|
|
h[ 7] = ROTR32(h[ 7] ^ h[11],7);
|
|
|
|
cudaMemcpyToSymbolAsync(d_data, h, 21*sizeof(uint32_t), 0, cudaMemcpyHostToDevice, streams[thr_id]);
|
|
}
|
|
|
|
static bool init[MAX_GPUS] = { 0 };
|
|
|
|
extern "C" int scanhash_vanilla(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done, const int8_t blakerounds)
|
|
{
|
|
uint32_t *pdata = work->data;
|
|
uint32_t *ptarget = work->target;
|
|
const uint32_t first_nonce = pdata[19];
|
|
const uint32_t targetHigh = ptarget[6];
|
|
int dev_id = device_map[thr_id];
|
|
|
|
int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 30 : 24;
|
|
if (device_sm[dev_id] < 350) intensity = 22;
|
|
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
|
|
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
|
|
|
|
if (!init[thr_id]) {
|
|
cudaSetDevice(dev_id);
|
|
if (opt_cudaschedule == -1 && gpu_threads == 1) {
|
|
cudaDeviceReset();
|
|
// reduce cpu usage (linux)
|
|
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
|
|
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
|
|
CUDA_LOG_ERROR();
|
|
}
|
|
gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput);
|
|
|
|
CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t)), -1);
|
|
CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t)), -1);
|
|
cudaStreamCreate(&streams[thr_id]);
|
|
init[thr_id] = true;
|
|
}
|
|
|
|
uint32_t _ALIGN(64) endiandata[20];
|
|
|
|
for (int k = 0; k < 16; k++)
|
|
be32enc(&endiandata[k], pdata[k]);
|
|
|
|
cudaMemsetAsync(d_resNonce[thr_id], 0xff, sizeof(uint32_t),streams[thr_id]);
|
|
|
|
vanilla_cpu_setBlock_16(thr_id,endiandata,&pdata[16]);
|
|
|
|
const dim3 grid((throughput + (NPT*TPB)-1)/(NPT*TPB));
|
|
const dim3 block(TPB);
|
|
int rc = 0;
|
|
|
|
do {
|
|
vanilla_gpu_hash_16_8<<<grid,block, 0, streams[thr_id]>>>(throughput, pdata[19], d_resNonce[thr_id], targetHigh);
|
|
cudaMemcpyAsync(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost,streams[thr_id]);
|
|
*hashes_done = pdata[19] - first_nonce + throughput;
|
|
cudaStreamSynchronize(streams[thr_id]);
|
|
|
|
if (h_resNonce[thr_id][0] != UINT32_MAX){
|
|
uint32_t vhashcpu[8];
|
|
uint32_t Htarg = (uint32_t)targetHigh;
|
|
|
|
for (int k=0; k < 19; k++)
|
|
be32enc(&endiandata[k], pdata[k]);
|
|
|
|
be32enc(&endiandata[19], h_resNonce[thr_id][0]);
|
|
vanillahash(vhashcpu, endiandata, blakerounds);
|
|
|
|
if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget)) {
|
|
work->valid_nonces = 1;
|
|
work->nonces[0] = h_resNonce[thr_id][0];
|
|
work_set_target_ratio(work, vhashcpu);
|
|
#if NBN > 1
|
|
if (h_resNonce[thr_id][1] != UINT32_MAX) {
|
|
work->nonces[1] = h_resNonce[thr_id][1];
|
|
be32enc(&endiandata[19], h_resNonce[thr_id][1]);
|
|
vanillahash(vhashcpu, endiandata, blakerounds);
|
|
if (bn_hash_target_ratio(vhashcpu, ptarget) > work->shareratio[0]) {
|
|
work_set_target_ratio(work, vhashcpu);
|
|
xchg(work->nonces[0], work->nonces[1]);
|
|
}
|
|
work->valid_nonces = 2;
|
|
pdata[19] = max(work->nonces[0], work->nonces[1]) + 1;
|
|
} else {
|
|
pdata[19] = work->nonces[0] + 1; // cursor
|
|
}
|
|
#endif
|
|
return work->valid_nonces;
|
|
}
|
|
else if (vhashcpu[6] > Htarg) {
|
|
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", h_resNonce[thr_id][0]);
|
|
pdata[19] = work->nonces[0] + 1;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if ((uint64_t) throughput + pdata[19] >= max_nonce) {
|
|
pdata[19] = max_nonce;
|
|
break;
|
|
}
|
|
|
|
pdata[19] += throughput;
|
|
|
|
} while (!work_restart[thr_id].restart);
|
|
|
|
*hashes_done = pdata[19] - first_nonce;
|
|
MyStreamSynchronize(NULL, 0, dev_id);
|
|
return rc;
|
|
}
|
|
|
|
// cleanup
|
|
extern "C" void free_vanilla(int thr_id)
|
|
{
|
|
if (!init[thr_id])
|
|
return;
|
|
|
|
cudaThreadSynchronize();
|
|
|
|
cudaFreeHost(h_resNonce[thr_id]);
|
|
cudaFree(d_resNonce[thr_id]);
|
|
|
|
init[thr_id] = false;
|
|
|
|
cudaDeviceSynchronize();
|
|
}
|