mirror of https://github.com/GOSTSec/ccminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
360 lines
12 KiB
360 lines
12 KiB
#include <cuda.h> |
|
#include "cuda_runtime.h" |
|
#include "device_launch_parameters.h" |
|
#include "sm_30_intrinsics.h" |
|
|
|
#include <stdio.h> |
|
#include <memory.h> |
|
#include <stdint.h> |
|
|
|
// aus cpu-miner.c |
|
extern int device_map[8]; |
|
|
|
// diese Struktur wird in der Init Funktion angefordert |
|
static cudaDeviceProp props[8]; |
|
|
|
static uint32_t *d_tempBranch1Nonces[8]; |
|
static uint32_t *d_numValid[8]; |
|
static uint32_t *h_numValid[8]; |
|
|
|
static uint32_t *d_partSum[2][8]; // für bis zu vier partielle Summen |
|
|
|
// aus heavy.cu |
|
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); |
|
|
|
// True/False tester |
|
typedef uint32_t(*cuda_compactTestFunction_t)(uint32_t *inpHash); |
|
|
|
__device__ uint32_t JackpotTrueTest(uint32_t *inpHash) |
|
{ |
|
uint32_t tmp = inpHash[0] & 0x01; |
|
return (tmp == 1); |
|
} |
|
|
|
__device__ uint32_t JackpotFalseTest(uint32_t *inpHash) |
|
{ |
|
uint32_t tmp = inpHash[0] & 0x01; |
|
return (tmp == 0); |
|
} |
|
|
|
__device__ cuda_compactTestFunction_t d_JackpotTrueFunction = JackpotTrueTest, d_JackpotFalseFunction = JackpotFalseTest; |
|
cuda_compactTestFunction_t h_JackpotTrueFunction[8], h_JackpotFalseFunction[8]; |
|
|
|
// Setup-Funktionen |
|
__host__ void jackpot_compactTest_cpu_init(int thr_id, int threads) |
|
{ |
|
cudaGetDeviceProperties(&props[thr_id], device_map[thr_id]); |
|
|
|
cudaMemcpyFromSymbol(&h_JackpotTrueFunction[thr_id], d_JackpotTrueFunction, sizeof(cuda_compactTestFunction_t)); |
|
cudaMemcpyFromSymbol(&h_JackpotFalseFunction[thr_id], d_JackpotFalseFunction, sizeof(cuda_compactTestFunction_t)); |
|
|
|
// wir brauchen auch Speicherplatz auf dem Device |
|
cudaMalloc(&d_tempBranch1Nonces[thr_id], sizeof(uint32_t) * threads * 2); |
|
cudaMalloc(&d_numValid[thr_id], 2*sizeof(uint32_t)); |
|
cudaMallocHost(&h_numValid[thr_id], 2*sizeof(uint32_t)); |
|
|
|
uint32_t s1; |
|
s1 = (threads / 256) * 2; |
|
|
|
cudaMalloc(&d_partSum[0][thr_id], sizeof(uint32_t) * s1); // BLOCKSIZE (Threads/Block) |
|
cudaMalloc(&d_partSum[1][thr_id], sizeof(uint32_t) * s1); // BLOCKSIZE (Threads/Block) |
|
} |
|
|
|
#if __CUDA_ARCH__ < 300 |
|
/** |
|
* __shfl_up() calculates a source lane ID by subtracting delta from the caller's lane ID, and clamping to the range 0..width-1 |
|
*/ |
|
#undef __shfl_up |
|
#define __shfl_up(var, delta, width) (0) |
|
#endif |
|
|
|
// Die Summenfunktion (vom NVIDIA SDK) |
|
__global__ void jackpot_compactTest_gpu_SCAN(uint32_t *data, int width, uint32_t *partial_sums=NULL, cuda_compactTestFunction_t testFunc=NULL, int threads=0, uint32_t startNounce=0, uint32_t *inpHashes=NULL, uint32_t *d_validNonceTable=NULL) |
|
{ |
|
extern __shared__ uint32_t sums[]; |
|
int id = ((blockIdx.x * blockDim.x) + threadIdx.x); |
|
//int lane_id = id % warpSize; |
|
int lane_id = id % width; |
|
// determine a warp_id within a block |
|
//int warp_id = threadIdx.x / warpSize; |
|
int warp_id = threadIdx.x / width; |
|
|
|
sums[lane_id] = 0; |
|
|
|
// Below is the basic structure of using a shfl instruction |
|
// for a scan. |
|
// Record "value" as a variable - we accumulate it along the way |
|
uint32_t value; |
|
if(testFunc != NULL) |
|
{ |
|
if (id < threads) |
|
{ |
|
uint32_t *inpHash; |
|
if(d_validNonceTable == NULL) |
|
{ |
|
// keine Nonce-Liste |
|
inpHash = &inpHashes[id<<4]; |
|
}else |
|
{ |
|
// Nonce-Liste verfügbar |
|
int nonce = d_validNonceTable[id] - startNounce; |
|
inpHash = &inpHashes[nonce<<4]; |
|
} |
|
value = (*testFunc)(inpHash); |
|
}else |
|
{ |
|
value = 0; |
|
} |
|
}else |
|
{ |
|
value = data[id]; |
|
} |
|
|
|
__syncthreads(); |
|
|
|
// Now accumulate in log steps up the chain |
|
// compute sums, with another thread's value who is |
|
// distance delta away (i). Note |
|
// those threads where the thread 'i' away would have |
|
// been out of bounds of the warp are unaffected. This |
|
// creates the scan sum. |
|
#pragma unroll |
|
|
|
for (int i=1; i<=width; i*=2) |
|
{ |
|
uint32_t n = __shfl_up((int)value, i, width); |
|
|
|
if (lane_id >= i) value += n; |
|
} |
|
|
|
// value now holds the scan value for the individual thread |
|
// next sum the largest values for each warp |
|
|
|
// write the sum of the warp to smem |
|
//if (threadIdx.x % warpSize == warpSize-1) |
|
if (threadIdx.x % width == width-1) |
|
{ |
|
sums[warp_id] = value; |
|
} |
|
|
|
__syncthreads(); |
|
|
|
// |
|
// scan sum the warp sums |
|
// the same shfl scan operation, but performed on warp sums |
|
// |
|
if (warp_id == 0) |
|
{ |
|
uint32_t warp_sum = sums[lane_id]; |
|
|
|
for (int i=1; i<=width; i*=2) |
|
{ |
|
uint32_t n = __shfl_up((int)warp_sum, i, width); |
|
|
|
if (lane_id >= i) warp_sum += n; |
|
} |
|
|
|
sums[lane_id] = warp_sum; |
|
} |
|
|
|
__syncthreads(); |
|
|
|
// perform a uniform add across warps in the block |
|
// read neighbouring warp's sum and add it to threads value |
|
uint32_t blockSum = 0; |
|
|
|
if (warp_id > 0) |
|
{ |
|
blockSum = sums[warp_id-1]; |
|
} |
|
|
|
value += blockSum; |
|
|
|
// Now write out our result |
|
data[id] = value; |
|
|
|
// last thread has sum, write write out the block's sum |
|
if (partial_sums != NULL && threadIdx.x == blockDim.x-1) |
|
{ |
|
partial_sums[blockIdx.x] = value; |
|
} |
|
} |
|
|
|
// Uniform add: add partial sums array |
|
__global__ void jackpot_compactTest_gpu_ADD(uint32_t *data, uint32_t *partial_sums, int len) |
|
{ |
|
__shared__ uint32_t buf; |
|
int id = ((blockIdx.x * blockDim.x) + threadIdx.x); |
|
|
|
if (id > len) return; |
|
|
|
if (threadIdx.x == 0) |
|
{ |
|
buf = partial_sums[blockIdx.x]; |
|
} |
|
|
|
__syncthreads(); |
|
data[id] += buf; |
|
} |
|
|
|
// Der Scatter |
|
__global__ void jackpot_compactTest_gpu_SCATTER(uint32_t *sum, uint32_t *outp, cuda_compactTestFunction_t testFunc, int threads=0, uint32_t startNounce=0, uint32_t *inpHashes=NULL, uint32_t *d_validNonceTable=NULL) |
|
{ |
|
int id = ((blockIdx.x * blockDim.x) + threadIdx.x); |
|
uint32_t actNounce = id; |
|
uint32_t value; |
|
if (id < threads) |
|
{ |
|
// uint32_t nounce = startNounce + id; |
|
uint32_t *inpHash; |
|
if(d_validNonceTable == NULL) |
|
{ |
|
// keine Nonce-Liste |
|
inpHash = &inpHashes[id<<4]; |
|
}else |
|
{ |
|
// Nonce-Liste verfügbar |
|
int nonce = d_validNonceTable[id] - startNounce; |
|
actNounce = nonce; |
|
inpHash = &inpHashes[nonce<<4]; |
|
} |
|
|
|
value = (*testFunc)(inpHash); |
|
}else |
|
{ |
|
value = 0; |
|
} |
|
|
|
if( value ) |
|
{ |
|
int idx = sum[id]; |
|
if(idx > 0) |
|
outp[idx-1] = startNounce + actNounce; |
|
} |
|
} |
|
|
|
__host__ static uint32_t jackpot_compactTest_roundUpExp(uint32_t val) |
|
{ |
|
if(val == 0) |
|
return 0; |
|
|
|
uint32_t mask = 0x80000000; |
|
while( (val & mask) == 0 ) mask = mask >> 1; |
|
|
|
if( (val & (~mask)) != 0 ) |
|
return mask << 1; |
|
|
|
return mask; |
|
} |
|
|
|
__host__ void jackpot_compactTest_cpu_singleCompaction(int thr_id, int threads, uint32_t *nrm, |
|
uint32_t *d_nonces1, cuda_compactTestFunction_t function, |
|
uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable) |
|
{ |
|
int orgThreads = threads; |
|
threads = (int)jackpot_compactTest_roundUpExp((uint32_t)threads); |
|
// threadsPerBlock ausrechnen |
|
int blockSize = 256; |
|
int nSummen = threads / blockSize; |
|
|
|
int thr1 = (threads+blockSize-1) / blockSize; |
|
int thr2 = threads / (blockSize*blockSize); |
|
int blockSize2 = (nSummen < blockSize) ? nSummen : blockSize; |
|
int thr3 = (nSummen + blockSize2-1) / blockSize2; |
|
|
|
bool callThrid = (thr2 > 0) ? true : false; |
|
|
|
// Erster Initialscan |
|
jackpot_compactTest_gpu_SCAN<<<thr1,blockSize, 32*sizeof(uint32_t)>>>( |
|
d_tempBranch1Nonces[thr_id], 32, d_partSum[0][thr_id], function, orgThreads, startNounce, inpHashes, d_validNonceTable); |
|
|
|
// weitere Scans |
|
if(callThrid) |
|
{ |
|
jackpot_compactTest_gpu_SCAN<<<thr2,blockSize, 32*sizeof(uint32_t)>>>(d_partSum[0][thr_id], 32, d_partSum[1][thr_id]); |
|
jackpot_compactTest_gpu_SCAN<<<1, thr2, 32*sizeof(uint32_t)>>>(d_partSum[1][thr_id], (thr2>32) ? 32 : thr2); |
|
}else |
|
{ |
|
jackpot_compactTest_gpu_SCAN<<<thr3,blockSize2, 32*sizeof(uint32_t)>>>(d_partSum[0][thr_id], (blockSize2>32) ? 32 : blockSize2); |
|
} |
|
|
|
// Sync + Anzahl merken |
|
cudaStreamSynchronize(NULL); |
|
|
|
if(callThrid) |
|
cudaMemcpy(nrm, &(d_partSum[1][thr_id])[thr2-1], sizeof(uint32_t), cudaMemcpyDeviceToHost); |
|
else |
|
cudaMemcpy(nrm, &(d_partSum[0][thr_id])[nSummen-1], sizeof(uint32_t), cudaMemcpyDeviceToHost); |
|
|
|
|
|
// Addieren |
|
if(callThrid) |
|
{ |
|
jackpot_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum[0][thr_id]+blockSize, d_partSum[1][thr_id], blockSize*thr2); |
|
} |
|
jackpot_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch1Nonces[thr_id]+blockSize, d_partSum[0][thr_id], threads); |
|
|
|
// Scatter |
|
jackpot_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranch1Nonces[thr_id], d_nonces1, |
|
function, orgThreads, startNounce, inpHashes, d_validNonceTable); |
|
|
|
// Sync |
|
cudaStreamSynchronize(NULL); |
|
} |
|
|
|
////// ACHTUNG: Diese funktion geht aktuell nur mit threads > 65536 (Am besten 256 * 1024 oder 256*2048) |
|
__host__ void jackpot_compactTest_cpu_dualCompaction(int thr_id, int threads, uint32_t *nrm, |
|
uint32_t *d_nonces1, uint32_t *d_nonces2, |
|
uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable) |
|
{ |
|
jackpot_compactTest_cpu_singleCompaction(thr_id, threads, &nrm[0], d_nonces1, h_JackpotTrueFunction[thr_id], startNounce, inpHashes, d_validNonceTable); |
|
jackpot_compactTest_cpu_singleCompaction(thr_id, threads, &nrm[1], d_nonces2, h_JackpotFalseFunction[thr_id], startNounce, inpHashes, d_validNonceTable); |
|
|
|
/* |
|
// threadsPerBlock ausrechnen |
|
int blockSize = 256; |
|
int thr1 = threads / blockSize; |
|
int thr2 = threads / (blockSize*blockSize); |
|
|
|
// 1 |
|
jackpot_compactTest_gpu_SCAN<<<thr1,blockSize, 32*sizeof(uint32_t)>>>(d_tempBranch1Nonces[thr_id], 32, d_partSum1[thr_id], h_JackpotTrueFunction[thr_id], threads, startNounce, inpHashes); |
|
jackpot_compactTest_gpu_SCAN<<<thr2,blockSize, 32*sizeof(uint32_t)>>>(d_partSum1[thr_id], 32, d_partSum2[thr_id]); |
|
jackpot_compactTest_gpu_SCAN<<<1, thr2, 32*sizeof(uint32_t)>>>(d_partSum2[thr_id], (thr2>32) ? 32 : thr2); |
|
cudaStreamSynchronize(NULL); |
|
cudaMemcpy(&nrm[0], &(d_partSum2[thr_id])[thr2-1], sizeof(uint32_t), cudaMemcpyDeviceToHost); |
|
jackpot_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum1[thr_id]+blockSize, d_partSum2[thr_id], blockSize*thr2); |
|
jackpot_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch1Nonces[thr_id]+blockSize, d_partSum1[thr_id], threads); |
|
|
|
// 2 |
|
jackpot_compactTest_gpu_SCAN<<<thr1,blockSize, 32*sizeof(uint32_t)>>>(d_tempBranch2Nonces[thr_id], 32, d_partSum1[thr_id], h_JackpotFalseFunction[thr_id], threads, startNounce, inpHashes); |
|
jackpot_compactTest_gpu_SCAN<<<thr2,blockSize, 32*sizeof(uint32_t)>>>(d_partSum1[thr_id], 32, d_partSum2[thr_id]); |
|
jackpot_compactTest_gpu_SCAN<<<1, thr2, 32*sizeof(uint32_t)>>>(d_partSum2[thr_id], (thr2>32) ? 32 : thr2); |
|
cudaStreamSynchronize(NULL); |
|
cudaMemcpy(&nrm[1], &(d_partSum2[thr_id])[thr2-1], sizeof(uint32_t), cudaMemcpyDeviceToHost); |
|
jackpot_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum1[thr_id]+blockSize, d_partSum2[thr_id], blockSize*thr2); |
|
jackpot_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch2Nonces[thr_id]+blockSize, d_partSum1[thr_id], threads); |
|
|
|
// Hier ist noch eine Besonderheit: in d_tempBranch1Nonces sind die element von 1...nrm1 die Interessanten |
|
// Schritt 3: Scatter |
|
jackpot_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranch1Nonces[thr_id], d_nonces1, h_JackpotTrueFunction[thr_id], threads, startNounce, inpHashes); |
|
jackpot_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranch2Nonces[thr_id], d_nonces2, h_JackpotFalseFunction[thr_id], threads, startNounce, inpHashes); |
|
cudaStreamSynchronize(NULL); |
|
*/ |
|
} |
|
|
|
__host__ void jackpot_compactTest_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable, |
|
uint32_t *d_nonces1, size_t *nrm1, |
|
uint32_t *d_nonces2, size_t *nrm2, |
|
int order) |
|
{ |
|
// Wenn validNonceTable genutzt wird, dann werden auch nur die Nonces betrachtet, die dort enthalten sind |
|
// "threads" ist in diesem Fall auf die Länge dieses Array's zu setzen! |
|
|
|
jackpot_compactTest_cpu_dualCompaction(thr_id, threads, |
|
h_numValid[thr_id], d_nonces1, d_nonces2, |
|
startNounce, inpHashes, d_validNonceTable); |
|
|
|
cudaStreamSynchronize(NULL); // Das original braucht zwar etwas CPU-Last, ist an dieser Stelle aber evtl besser |
|
*nrm1 = (size_t)h_numValid[thr_id][0]; |
|
*nrm2 = (size_t)h_numValid[thr_id][1]; |
|
}
|
|
|