1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-09 22:38:05 +00:00
ccminer/blake32.cu
Tanguy Pruvot ba33492592 blake: return to ptarget 6:7 compare
clz can be erroneous, ex 0xE0 vs 0xF0
2014-09-19 05:01:16 +02:00

374 lines
9.9 KiB
Plaintext

/**
* Blake-256 Cuda Kernel (Tested on SM 5.0)
*
* Tanguy Pruvot - Aug. 2014
*/
#include "miner.h"
extern "C" {
#include "sph/sph_blake.h"
#include <stdint.h>
#include <memory.h>
}
/* threads per block */
#define TPB 128
/* crc32.c */
extern "C" uint32_t crc32_u32t(const uint32_t *buf, size_t size);
extern "C" int blake256_rounds = 14;
/* hash by cpu with blake 256 */
extern "C" void blake256hash(void *output, const void *input, int8_t rounds = 14)
{
unsigned char hash[64];
sph_blake256_context ctx;
/* in sph_blake.c */
blake256_rounds = rounds;
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 80);
sph_blake256_close(&ctx, hash);
memcpy(output, hash, 32);
}
#include "cuda_helper.h"
#define MAXU 0xffffffffU
// in cpu-miner.c
extern bool opt_n_threads;
extern bool opt_benchmark;
extern int device_map[8];
__constant__
static uint32_t __align__(32) c_data[20];
/* 8 adapters max (-t threads) */
static uint32_t *d_resNonce[8];
static uint32_t *h_resNonce[8];
/* max count of found nounces in one call */
#define NBN 2
static uint32_t extra_results[NBN-1] = { MAXU };
#define USE_CACHE 1
/* midstate hash cache, this algo is run on 2 parts */
#if USE_CACHE
__device__ static uint32_t cache[8];
__device__ static uint32_t prevsum = 0;
#endif
/* prefer uint32_t to prevent size conversions = speed +5/10 % */
__constant__
static uint32_t __align__(32) c_sigma[16][16];
const uint32_t host_sigma[16][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
};
__device__ __constant__
static const uint32_t __align__(32) c_IV256[8] = {
SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85),
SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A),
SPH_C32(0x510E527F), SPH_C32(0x9B05688C),
SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19)
};
__device__ __constant__
static const uint32_t __align__(32) c_u256[16] = {
SPH_C32(0x243F6A88), SPH_C32(0x85A308D3),
SPH_C32(0x13198A2E), SPH_C32(0x03707344),
SPH_C32(0xA4093822), SPH_C32(0x299F31D0),
SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89),
SPH_C32(0x452821E6), SPH_C32(0x38D01377),
SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C),
SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD),
SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917)
};
#define GS(a,b,c,d,x) { \
const uint32_t idx1 = c_sigma[i][x]; \
const uint32_t idx2 = c_sigma[i][x+1]; \
v[a] += (m[idx1] ^ c_u256[idx2]) + v[b]; \
v[d] = SPH_ROTL32(v[d] ^ v[a], 16); \
v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \
\
v[a] += (m[idx2] ^ c_u256[idx1]) + v[b]; \
v[d] = SPH_ROTR32(v[d] ^ v[a], 8); \
v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \
}
/* Second part (64-80) msg never change, store it */
__device__ __constant__
static const uint32_t __align__(32) c_Padding[16] = {
0, 0, 0, 0,
0x80000000UL, 0, 0, 0,
0, 0, 0, 0,
0, 1, 0, 640,
};
__device__ static
void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0, const int rounds)
{
uint32_t /* __align__(8) */ m[16];
uint32_t /* __align__(8) */ v[16];
m[0] = block[0];
m[1] = block[1];
m[2] = block[2];
m[3] = block[3];
for (uint32_t i = 4; i < 16; i++) {
m[i] = (T0 == 0x200) ? block[i] : c_Padding[i];
}
//#pragma unroll 8
for(uint32_t i = 0; i < 8; i++)
v[i] = h[i];
v[ 8] = c_u256[0];
v[ 9] = c_u256[1];
v[10] = c_u256[2];
v[11] = c_u256[3];
v[12] = c_u256[4] ^ T0;
v[13] = c_u256[5] ^ T0;
v[14] = c_u256[6];
v[15] = c_u256[7];
for (int i = 0; i < rounds; i++) {
/* column step */
GS(0, 4, 0x8, 0xC, 0x0);
GS(1, 5, 0x9, 0xD, 0x2);
GS(2, 6, 0xA, 0xE, 0x4);
GS(3, 7, 0xB, 0xF, 0x6);
/* diagonal step */
GS(0, 5, 0xA, 0xF, 0x8);
GS(1, 6, 0xB, 0xC, 0xA);
GS(2, 7, 0x8, 0xD, 0xC);
GS(3, 4, 0x9, 0xE, 0xE);
}
//#pragma unroll 16
for (uint32_t i = 0; i < 16; i++) {
uint32_t j = i % 8U;
h[j] ^= v[i];
}
}
__global__
void blake256_gpu_hash_80(const uint32_t threads, const uint32_t startNonce, uint32_t *resNounce,
const uint64_t highTarget, const int crcsum, const int rounds)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint32_t nounce = startNonce + thread;
uint32_t h[8];
#pragma unroll
for(int i=0; i<8; i++) {
h[i] = c_IV256[i];
}
#if !USE_CACHE
blake256_compress(h, c_data, 512);
#else
if (crcsum != prevsum) {
prevsum = crcsum;
blake256_compress(h, c_data, 512, rounds);
#pragma unroll
for(int i=0; i<8; i++) {
cache[i] = h[i];
}
} else {
#pragma unroll
for(int i=0; i<8; i++) {
h[i] = cache[i];
}
}
#endif
// ------ Close: Bytes 64 to 80 ------
uint32_t ending[4];
ending[0] = c_data[16];
ending[1] = c_data[17];
ending[2] = c_data[18];
ending[3] = nounce; /* our tested value */
blake256_compress(h, ending, 640, rounds);
// not sure why, h[7] is ok
h[6] = cuda_swab32(h[6]);
// compare count of leading zeros h[6] + h[7]
uint64_t high64 = ((uint64_t*)h)[3];
if (high64 <= highTarget)
#if NBN == 2
/* keep the smallest nounce, + extra one if found */
if (resNounce[0] > nounce) {
// printf("%llx %llx \n", high64, highTarget);
resNounce[1] = resNounce[0];
resNounce[0] = nounce;
}
else
resNounce[1] = nounce;
#else
resNounce[0] = nounce;
#endif
}
}
__host__
uint32_t blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget,
const uint32_t crcsum, const int8_t rounds)
{
const int threadsperblock = TPB;
uint32_t result = MAXU;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 0;
/* Check error on Ctrl+C or kill to prevent segfaults on exit */
if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess)
return result;
blake256_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNonce, d_resNonce[thr_id], highTarget, crcsum, (int) rounds);
cudaDeviceSynchronize();
if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
//cudaThreadSynchronize(); /* seems no more required */
result = h_resNonce[thr_id][0];
for (int n=0; n < (NBN-1); n++)
extra_results[n] = h_resNonce[thr_id][n+1];
}
return result;
}
__host__
void blake256_cpu_setBlock_80(uint32_t *pdata, const uint32_t *ptarget)
{
uint32_t data[20];
memcpy(data, pdata, 80);
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, sizeof(data), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_sigma, host_sigma, sizeof(host_sigma), 0, cudaMemcpyHostToDevice));
}
extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *ptarget,
uint32_t max_nonce, unsigned long *hashes_done, int8_t blakerounds=14)
{
const uint32_t first_nonce = pdata[19];
static bool init[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
uint32_t throughput = min(TPB * 4096, max_nonce - first_nonce);
uint64_t targetHigh = ((uint64_t*)ptarget)[3];
uint32_t crcsum = MAXU;
int rc = 0;
#if NBN > 1
if (extra_results[0] != MAXU) {
// possible extra result found in previous call
if (first_nonce <= extra_results[0] && max_nonce >= extra_results[0]) {
pdata[19] = extra_results[0];
*hashes_done = pdata[19] - first_nonce + 1;
extra_results[0] = MAXU;
rc = 1;
goto exit_scan;
}
}
#endif
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x00000f;
if (!init[thr_id]) {
if (opt_n_threads > 1) {
CUDA_SAFE_CALL(cudaSetDevice(device_map[thr_id]));
}
CUDA_SAFE_CALL(cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t)));
CUDA_SAFE_CALL(cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t)));
init[thr_id] = true;
}
blake256_cpu_setBlock_80(pdata, ptarget);
#if USE_CACHE
crcsum = crc32_u32t(pdata, 64);
#endif
do {
// GPU HASH
uint32_t foundNonce = blake256_cpu_hash_80(thr_id, throughput, pdata[19], targetHigh, crcsum, blakerounds);
if (foundNonce != MAXU)
{
uint32_t endiandata[20];
uint32_t vhashcpu[8];
uint32_t Htarg = ptarget[6];
for (int k=0; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);
be32enc(&endiandata[19], foundNonce);
blake256hash(vhashcpu, endiandata, blakerounds);
if (vhashcpu[6] <= Htarg || cuda_swab32(vhashcpu[6]) <= Htarg /*&& fulltest(vhashcpu, ptarget)*/)
{
pdata[19] = foundNonce;
rc = 1;
if (extra_results[0] != MAXU) {
// Rare but possible if the throughput is big
be32enc(&endiandata[19], extra_results[0]);
blake256hash(vhashcpu, endiandata, blakerounds);
if (vhashcpu[6] <= Htarg /* && fulltest(vhashcpu, ptarget) */) {
applog(LOG_NOTICE, "GPU found more than one result " CL_GRN "yippee!");
rc = 2;
} else {
extra_results[0] = MAXU;
}
}
//applog_hash((uint8_t*)ptarget);
//applog_compare_hash((uint8_t*)vhashcpu,(uint8_t*)ptarget);
goto exit_scan;
}
else if (opt_debug) {
applog_hash((uint8_t*)ptarget);
applog_compare_hash((uint8_t*)vhashcpu,(uint8_t*)ptarget);
applog(LOG_DEBUG, "GPU #%d: result for nounce %08x does not validate on CPU!", thr_id, foundNonce);
}
}
if ((uint64_t) pdata[19] + throughput > (uint64_t) max_nonce) {
pdata[19] = max_nonce;
break;
}
pdata[19] += throughput;
} while (!work_restart[thr_id].restart);
exit_scan:
*hashes_done = pdata[19] - first_nonce + 1;
return rc;
}