mirror of
https://github.com/GOSTSec/ccminer
synced 2025-01-10 14:57:53 +00:00
345 lines
14 KiB
C++
345 lines
14 KiB
C++
/*
|
|
* Copyright 2008-2012 NVIDIA Corporation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <thrust/detail/config.h>
|
|
#include <thrust/system/tbb/detail/reduce_by_key.h>
|
|
#include <thrust/iterator/reverse_iterator.h>
|
|
#include <thrust/system/cpp/execution_policy.h>
|
|
#include <thrust/system/tbb/detail/execution_policy.h>
|
|
#include <thrust/system/tbb/detail/reduce_intervals.h>
|
|
#include <thrust/detail/minmax.h>
|
|
#include <thrust/detail/temporary_array.h>
|
|
#include <thrust/detail/range/tail_flags.h>
|
|
#include <tbb/blocked_range.h>
|
|
#include <tbb/parallel_for.h>
|
|
#include <tbb/tbb_thread.h>
|
|
#include <cassert>
|
|
|
|
|
|
namespace thrust
|
|
{
|
|
namespace system
|
|
{
|
|
namespace tbb
|
|
{
|
|
namespace detail
|
|
{
|
|
namespace reduce_by_key_detail
|
|
{
|
|
|
|
|
|
template<typename L, typename R>
|
|
inline L divide_ri(const L x, const R y)
|
|
{
|
|
return (x + (y - 1)) / y;
|
|
}
|
|
|
|
|
|
template<typename InputIterator, typename BinaryFunction, typename OutputIterator = void>
|
|
struct partial_sum_type
|
|
: thrust::detail::eval_if<
|
|
thrust::detail::has_result_type<BinaryFunction>::value,
|
|
thrust::detail::result_type<BinaryFunction>,
|
|
thrust::detail::eval_if<
|
|
thrust::detail::is_output_iterator<OutputIterator>::value,
|
|
thrust::iterator_value<InputIterator>,
|
|
thrust::iterator_value<OutputIterator>
|
|
>
|
|
>
|
|
{};
|
|
|
|
|
|
template<typename InputIterator, typename BinaryFunction>
|
|
struct partial_sum_type<InputIterator,BinaryFunction,void>
|
|
: thrust::detail::eval_if<
|
|
thrust::detail::has_result_type<BinaryFunction>::value,
|
|
thrust::detail::result_type<BinaryFunction>,
|
|
thrust::iterator_value<InputIterator>
|
|
>
|
|
{};
|
|
|
|
|
|
template<typename InputIterator1,
|
|
typename InputIterator2,
|
|
typename BinaryPredicate,
|
|
typename BinaryFunction>
|
|
thrust::pair<
|
|
InputIterator1,
|
|
thrust::pair<
|
|
typename InputIterator1::value_type,
|
|
typename partial_sum_type<InputIterator2,BinaryFunction>::type
|
|
>
|
|
>
|
|
reduce_last_segment_backward(InputIterator1 keys_first,
|
|
InputIterator1 keys_last,
|
|
InputIterator2 values_first,
|
|
BinaryPredicate binary_pred,
|
|
BinaryFunction binary_op)
|
|
{
|
|
typename thrust::iterator_difference<InputIterator1>::type n = keys_last - keys_first;
|
|
|
|
// reverse the ranges and consume from the end
|
|
thrust::reverse_iterator<InputIterator1> keys_first_r(keys_last);
|
|
thrust::reverse_iterator<InputIterator1> keys_last_r(keys_first);
|
|
thrust::reverse_iterator<InputIterator2> values_first_r(values_first + n);
|
|
|
|
typename InputIterator1::value_type result_key = *keys_first_r;
|
|
typename partial_sum_type<InputIterator2,BinaryFunction>::type result_value = *values_first_r;
|
|
|
|
// consume the entirety of the first key's sequence
|
|
for(++keys_first_r, ++values_first_r;
|
|
(keys_first_r != keys_last_r) && binary_pred(*keys_first_r, result_key);
|
|
++keys_first_r, ++values_first_r)
|
|
{
|
|
result_value = binary_op(result_value, *values_first_r);
|
|
}
|
|
|
|
return thrust::make_pair(keys_first_r.base(), thrust::make_pair(result_key, result_value));
|
|
}
|
|
|
|
|
|
template<typename InputIterator1,
|
|
typename InputIterator2,
|
|
typename OutputIterator1,
|
|
typename OutputIterator2,
|
|
typename BinaryPredicate,
|
|
typename BinaryFunction>
|
|
thrust::tuple<
|
|
OutputIterator1,
|
|
OutputIterator2,
|
|
typename InputIterator1::value_type,
|
|
typename partial_sum_type<InputIterator2,BinaryFunction>::type
|
|
>
|
|
reduce_by_key_with_carry(InputIterator1 keys_first,
|
|
InputIterator1 keys_last,
|
|
InputIterator2 values_first,
|
|
OutputIterator1 keys_output,
|
|
OutputIterator2 values_output,
|
|
BinaryPredicate binary_pred,
|
|
BinaryFunction binary_op)
|
|
{
|
|
// first, consume the last sequence to produce the carry
|
|
// XXX is there an elegant way to pose this such that we don't need to default construct carry?
|
|
thrust::pair<
|
|
typename InputIterator1::value_type,
|
|
typename partial_sum_type<InputIterator2,BinaryFunction>::type
|
|
> carry;
|
|
|
|
thrust::tie(keys_last, carry) = reduce_last_segment_backward(keys_first, keys_last, values_first, binary_pred, binary_op);
|
|
|
|
// finish with sequential reduce_by_key
|
|
thrust::cpp::tag seq;
|
|
thrust::tie(keys_output, values_output) =
|
|
thrust::reduce_by_key(seq, keys_first, keys_last, values_first, keys_output, values_output, binary_pred, binary_op);
|
|
|
|
return thrust::make_tuple(keys_output, values_output, carry.first, carry.second);
|
|
}
|
|
|
|
|
|
template<typename Iterator>
|
|
bool interval_has_carry(size_t interval_idx, size_t interval_size, size_t num_intervals, Iterator tail_flags)
|
|
{
|
|
// to discover whether the interval has a carry, look at the tail_flag corresponding to its last element
|
|
// the final interval never has a carry by definition
|
|
return (interval_idx + 1 < num_intervals) ? !tail_flags[(interval_idx + 1) * interval_size - 1] : false;
|
|
}
|
|
|
|
|
|
template<typename Iterator1, typename Iterator2, typename Iterator3, typename Iterator4, typename Iterator5, typename Iterator6, typename BinaryPredicate, typename BinaryFunction>
|
|
struct serial_reduce_by_key_body
|
|
{
|
|
typedef typename thrust::iterator_difference<Iterator1>::type size_type;
|
|
|
|
Iterator1 keys_first;
|
|
Iterator2 values_first;
|
|
Iterator3 result_offset;
|
|
Iterator4 keys_result;
|
|
Iterator5 values_result;
|
|
Iterator6 carry_result;
|
|
|
|
size_type n;
|
|
size_type interval_size;
|
|
size_type num_intervals;
|
|
|
|
BinaryPredicate binary_pred;
|
|
BinaryFunction binary_op;
|
|
|
|
serial_reduce_by_key_body(Iterator1 keys_first, Iterator2 values_first, Iterator3 result_offset, Iterator4 keys_result, Iterator5 values_result, Iterator6 carry_result, size_type n, size_type interval_size, size_type num_intervals, BinaryPredicate binary_pred, BinaryFunction binary_op)
|
|
: keys_first(keys_first), values_first(values_first),
|
|
result_offset(result_offset),
|
|
keys_result(keys_result),
|
|
values_result(values_result),
|
|
carry_result(carry_result),
|
|
n(n),
|
|
interval_size(interval_size),
|
|
num_intervals(num_intervals),
|
|
binary_pred(binary_pred),
|
|
binary_op(binary_op)
|
|
{}
|
|
|
|
void operator()(const ::tbb::blocked_range<size_type> &r) const
|
|
{
|
|
assert(r.size() == 1);
|
|
|
|
const size_type interval_idx = r.begin();
|
|
|
|
const size_type offset_to_first = interval_size * interval_idx;
|
|
const size_type offset_to_last = thrust::min(n, offset_to_first + interval_size);
|
|
|
|
Iterator1 my_keys_first = keys_first + offset_to_first;
|
|
Iterator1 my_keys_last = keys_first + offset_to_last;
|
|
Iterator2 my_values_first = values_first + offset_to_first;
|
|
Iterator3 my_result_offset = result_offset + interval_idx;
|
|
Iterator4 my_keys_result = keys_result + *my_result_offset;
|
|
Iterator5 my_values_result = values_result + *my_result_offset;
|
|
Iterator6 my_carry_result = carry_result + interval_idx;
|
|
|
|
// consume the rest of the interval with reduce_by_key
|
|
typedef typename thrust::iterator_value<Iterator1>::type key_type;
|
|
typedef typename partial_sum_type<Iterator2,BinaryFunction>::type value_type;
|
|
|
|
// XXX is there a way to pose this so that we don't require default construction of carry?
|
|
thrust::pair<key_type, value_type> carry;
|
|
|
|
thrust::tie(my_keys_result, my_values_result, carry.first, carry.second) =
|
|
reduce_by_key_with_carry(my_keys_first,
|
|
my_keys_last,
|
|
my_values_first,
|
|
my_keys_result,
|
|
my_values_result,
|
|
binary_pred,
|
|
binary_op);
|
|
|
|
// store to carry only when we actually have a carry
|
|
// store to my_keys_result & my_values_result otherwise
|
|
|
|
// create tail_flags so we can check for a carry
|
|
thrust::detail::tail_flags<Iterator1,BinaryPredicate> flags = thrust::detail::make_tail_flags(keys_first, keys_first + n, binary_pred);
|
|
|
|
if(interval_has_carry(interval_idx, interval_size, num_intervals, flags.begin()))
|
|
{
|
|
// we can ignore the carry's key
|
|
// XXX because the carry result is uninitialized, we should copy construct
|
|
*my_carry_result = carry.second;
|
|
}
|
|
else
|
|
{
|
|
*my_keys_result = carry.first;
|
|
*my_values_result = carry.second;
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
template<typename Iterator1, typename Iterator2, typename Iterator3, typename Iterator4, typename Iterator5, typename Iterator6, typename BinaryPredicate, typename BinaryFunction>
|
|
serial_reduce_by_key_body<Iterator1,Iterator2,Iterator3,Iterator4,Iterator5,Iterator6,BinaryPredicate,BinaryFunction>
|
|
make_serial_reduce_by_key_body(Iterator1 keys_first, Iterator2 values_first, Iterator3 result_offset, Iterator4 keys_result, Iterator5 values_result, Iterator6 carry_result, typename thrust::iterator_difference<Iterator1>::type n, size_t interval_size, size_t num_intervals, BinaryPredicate binary_pred, BinaryFunction binary_op)
|
|
{
|
|
return serial_reduce_by_key_body<Iterator1,Iterator2,Iterator3,Iterator4,Iterator5,Iterator6,BinaryPredicate,BinaryFunction>(keys_first, values_first, result_offset, keys_result, values_result, carry_result, n, interval_size, num_intervals, binary_pred, binary_op);
|
|
}
|
|
|
|
|
|
} // end reduce_by_key_detail
|
|
|
|
|
|
template<typename DerivedPolicy, typename Iterator1, typename Iterator2, typename Iterator3, typename Iterator4, typename BinaryPredicate, typename BinaryFunction>
|
|
thrust::pair<Iterator3,Iterator4>
|
|
reduce_by_key(thrust::tbb::execution_policy<DerivedPolicy> &exec,
|
|
Iterator1 keys_first, Iterator1 keys_last,
|
|
Iterator2 values_first,
|
|
Iterator3 keys_result,
|
|
Iterator4 values_result,
|
|
BinaryPredicate binary_pred,
|
|
BinaryFunction binary_op)
|
|
{
|
|
|
|
typedef typename thrust::iterator_difference<Iterator1>::type difference_type;
|
|
difference_type n = keys_last - keys_first;
|
|
if(n == 0) return thrust::make_pair(keys_result, values_result);
|
|
|
|
// XXX this value is a tuning opportunity
|
|
const difference_type parallelism_threshold = 10000;
|
|
|
|
if(n < parallelism_threshold)
|
|
{
|
|
// don't bother parallelizing for small n
|
|
thrust::cpp::tag seq;
|
|
return thrust::reduce_by_key(seq, keys_first, keys_last, values_first, keys_result, values_result, binary_pred, binary_op);
|
|
}
|
|
|
|
// count the number of processors
|
|
const unsigned int p = thrust::max<unsigned int>(1u, ::tbb::tbb_thread::hardware_concurrency());
|
|
|
|
// generate O(P) intervals of sequential work
|
|
// XXX oversubscribing is a tuning opportunity
|
|
const unsigned int subscription_rate = 1;
|
|
difference_type interval_size = thrust::min<difference_type>(parallelism_threshold, thrust::max<difference_type>(n, n / (subscription_rate * p)));
|
|
difference_type num_intervals = reduce_by_key_detail::divide_ri(n, interval_size);
|
|
|
|
// decompose the input into intervals of size N / num_intervals
|
|
// add one extra element to this vector to store the size of the entire result
|
|
thrust::detail::temporary_array<difference_type, DerivedPolicy> interval_output_offsets(0, exec, num_intervals + 1);
|
|
|
|
// first count the number of tail flags in each interval
|
|
thrust::detail::tail_flags<Iterator1,BinaryPredicate> tail_flags = thrust::detail::make_tail_flags(keys_first, keys_last, binary_pred);
|
|
thrust::system::tbb::detail::reduce_intervals(exec, tail_flags.begin(), tail_flags.end(), interval_size, interval_output_offsets.begin() + 1, thrust::plus<size_t>());
|
|
interval_output_offsets[0] = 0;
|
|
|
|
// scan the counts to get each body's output offset
|
|
thrust::cpp::tag seq;
|
|
thrust::inclusive_scan(seq,
|
|
interval_output_offsets.begin() + 1, interval_output_offsets.end(),
|
|
interval_output_offsets.begin() + 1);
|
|
|
|
// do a reduce_by_key serially in each thread
|
|
// the final interval never has a carry by definition, so don't reserve space for it
|
|
typedef typename reduce_by_key_detail::partial_sum_type<Iterator2,BinaryFunction>::type carry_type;
|
|
thrust::detail::temporary_array<carry_type, DerivedPolicy> carries(0, exec, num_intervals - 1);
|
|
|
|
// force grainsize == 1 with simple_partioner()
|
|
::tbb::parallel_for(::tbb::blocked_range<difference_type>(0, num_intervals, 1),
|
|
reduce_by_key_detail::make_serial_reduce_by_key_body(keys_first, values_first, interval_output_offsets.begin(), keys_result, values_result, carries.begin(), n, interval_size, num_intervals, binary_pred, binary_op),
|
|
::tbb::simple_partitioner());
|
|
|
|
difference_type size_of_result = interval_output_offsets[num_intervals];
|
|
|
|
// sequentially accumulate the carries
|
|
// note that the last interval does not have a carry
|
|
// XXX find a way to express this loop via a sequential algorithm, perhaps reduce_by_key
|
|
for(typename thrust::detail::temporary_array<carry_type,DerivedPolicy>::size_type i = 0; i < carries.size(); ++i)
|
|
{
|
|
// if our interval has a carry, then we need to sum the carry to the next interval's output offset
|
|
// if it does not have a carry, then we need to ignore carry_value[i]
|
|
if(reduce_by_key_detail::interval_has_carry(i, interval_size, num_intervals, tail_flags.begin()))
|
|
{
|
|
difference_type output_idx = interval_output_offsets[i+1];
|
|
|
|
values_result[output_idx] = binary_op(values_result[output_idx], carries[i]);
|
|
}
|
|
}
|
|
|
|
return thrust::make_pair(keys_result + size_of_result, values_result + size_of_result);
|
|
}
|
|
|
|
|
|
} // end detail
|
|
} // end tbb
|
|
} // end system
|
|
} // end thrust
|
|
|