mirror of https://github.com/GOSTSec/ccminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
259 lines
6.6 KiB
259 lines
6.6 KiB
#include <stdio.h> |
|
#include <memory.h> |
|
#include <string.h> |
|
#include <unistd.h> |
|
#include <map> |
|
|
|
#ifndef _WIN32 |
|
#include <unistd.h> |
|
#endif |
|
|
|
// include thrust |
|
#ifndef __cplusplus |
|
#include <thrust/version.h> |
|
#include <thrust/remove.h> |
|
#include <thrust/device_vector.h> |
|
#include <thrust/iterator/constant_iterator.h> |
|
#else |
|
#include <ctype.h> |
|
#endif |
|
|
|
#include "miner.h" |
|
#include "nvml.h" |
|
|
|
#include "cuda_runtime.h" |
|
|
|
#ifdef __cplusplus |
|
/* miner.h functions are declared in C type, not C++ */ |
|
extern "C" { |
|
#endif |
|
|
|
// CUDA Devices on the System |
|
int cuda_num_devices() |
|
{ |
|
int version; |
|
cudaError_t err = cudaDriverGetVersion(&version); |
|
if (err != cudaSuccess) |
|
{ |
|
applog(LOG_ERR, "Unable to query CUDA driver version! Is an nVidia driver installed?"); |
|
exit(1); |
|
} |
|
|
|
int maj = version / 1000, min = version % 100; // same as in deviceQuery sample |
|
if (maj < 5 || (maj == 5 && min < 5)) |
|
{ |
|
applog(LOG_ERR, "Driver does not support CUDA %d.%d API! Update your nVidia driver!", 5, 5); |
|
exit(1); |
|
} |
|
|
|
int GPU_N; |
|
err = cudaGetDeviceCount(&GPU_N); |
|
if (err != cudaSuccess) |
|
{ |
|
applog(LOG_ERR, "Unable to query number of CUDA devices! Is an nVidia driver installed?"); |
|
exit(1); |
|
} |
|
return GPU_N; |
|
} |
|
|
|
void cuda_devicenames() |
|
{ |
|
cudaError_t err; |
|
int GPU_N; |
|
err = cudaGetDeviceCount(&GPU_N); |
|
if (err != cudaSuccess) |
|
{ |
|
applog(LOG_ERR, "Unable to query number of CUDA devices! Is an nVidia driver installed?"); |
|
exit(1); |
|
} |
|
|
|
if (opt_n_threads) |
|
GPU_N = min(MAX_GPUS, opt_n_threads); |
|
for (int i=0; i < GPU_N; i++) |
|
{ |
|
char vendorname[32] = { 0 }; |
|
cudaDeviceProp props; |
|
cudaGetDeviceProperties(&props, device_map[i]); |
|
|
|
device_sm[i] = (props.major * 100 + props.minor * 10); |
|
|
|
if (device_name[i]) { |
|
free(device_name[i]); |
|
device_name[i] = NULL; |
|
} |
|
#ifdef USE_WRAPNVML |
|
if (gpu_vendor((uint8_t)props.pciBusID, vendorname) > 0 && strlen(vendorname)) { |
|
device_name[i] = (char*) calloc(1, strlen(vendorname) + strlen(props.name) + 2); |
|
if (!strncmp(props.name, "GeForce ", 8)) |
|
sprintf(device_name[i], "%s %s", vendorname, &props.name[8]); |
|
else |
|
sprintf(device_name[i], "%s %s", vendorname, props.name); |
|
} else |
|
#endif |
|
device_name[i] = strdup(props.name); |
|
} |
|
} |
|
|
|
void cuda_print_devices() |
|
{ |
|
int ngpus = cuda_num_devices(); |
|
cuda_devicenames(); |
|
for (int n=0; n < ngpus; n++) { |
|
int m = device_map[n % MAX_GPUS]; |
|
cudaDeviceProp props; |
|
cudaGetDeviceProperties(&props, m); |
|
if (!opt_n_threads || n < opt_n_threads) { |
|
fprintf(stderr, "GPU #%d: SM %d.%d %s\n", m, props.major, props.minor, device_name[n]); |
|
} |
|
} |
|
} |
|
|
|
void cuda_shutdown() |
|
{ |
|
cudaDeviceSynchronize(); |
|
cudaDeviceReset(); |
|
} |
|
|
|
static bool substringsearch(const char *haystack, const char *needle, int &match) |
|
{ |
|
int hlen = (int) strlen(haystack); |
|
int nlen = (int) strlen(needle); |
|
for (int i=0; i < hlen; ++i) |
|
{ |
|
if (haystack[i] == ' ') continue; |
|
int j=0, x = 0; |
|
while(j < nlen) |
|
{ |
|
if (haystack[i+x] == ' ') {++x; continue;} |
|
if (needle[j] == ' ') {++j; continue;} |
|
if (needle[j] == '#') return ++match == needle[j+1]-'0'; |
|
if (tolower(haystack[i+x]) != tolower(needle[j])) break; |
|
++j; ++x; |
|
} |
|
if (j == nlen) return true; |
|
} |
|
return false; |
|
} |
|
|
|
// CUDA Gerät nach Namen finden (gibt Geräte-Index zurück oder -1) |
|
int cuda_finddevice(char *name) |
|
{ |
|
int num = cuda_num_devices(); |
|
int match = 0; |
|
for (int i=0; i < num; ++i) |
|
{ |
|
cudaDeviceProp props; |
|
if (cudaGetDeviceProperties(&props, i) == cudaSuccess) |
|
if (substringsearch(props.name, name, match)) return i; |
|
} |
|
return -1; |
|
} |
|
|
|
// since 1.7 |
|
uint32_t cuda_default_throughput(int thr_id, uint32_t defcount) |
|
{ |
|
//int dev_id = device_map[thr_id % MAX_GPUS]; |
|
uint32_t throughput = gpus_intensity[thr_id] ? gpus_intensity[thr_id] : defcount; |
|
if (gpu_threads > 1 && throughput == defcount) throughput /= (gpu_threads-1); |
|
api_set_throughput(thr_id, throughput); |
|
//gpulog(LOG_INFO, thr_id, "throughput %u", throughput); |
|
return throughput; |
|
} |
|
|
|
// if we use 2 threads on the same gpu, we need to reinit the threads |
|
void cuda_reset_device(int thr_id, bool *init) |
|
{ |
|
int dev_id = device_map[thr_id % MAX_GPUS]; |
|
cudaSetDevice(dev_id); |
|
if (init != NULL) { |
|
// with init array, its meant to be used in algo's scan code... |
|
for (int i=0; i < MAX_GPUS; i++) { |
|
if (device_map[i] == dev_id) { |
|
init[i] = false; |
|
} |
|
} |
|
// force exit from algo's scan loops/function |
|
restart_threads(); |
|
cudaDeviceSynchronize(); |
|
while (cudaStreamQuery(NULL) == cudaErrorNotReady) |
|
usleep(1000); |
|
} |
|
cudaDeviceReset(); |
|
if (opt_cudaschedule >= 0) { |
|
cudaSetDevice(dev_id); |
|
cudaSetDeviceFlags((unsigned)(opt_cudaschedule & cudaDeviceScheduleMask)); |
|
} |
|
} |
|
|
|
// return free memory in megabytes |
|
int cuda_available_memory(int thr_id) |
|
{ |
|
int dev_id = device_map[thr_id % MAX_GPUS]; |
|
size_t mtotal, mfree = 0; |
|
cudaSetDevice(dev_id); |
|
cudaMemGetInfo(&mfree, &mtotal); |
|
return (int) (mfree / (1024 * 1024)); |
|
} |
|
|
|
// Check (and reset) last cuda error, and report it in logs |
|
void cuda_log_lasterror(int thr_id, const char* func, int line) |
|
{ |
|
cudaError_t err = cudaGetLastError(); |
|
if (err != cudaSuccess && !opt_quiet) |
|
gpulog(LOG_WARNING, thr_id, "%s:%d %s", func, line, cudaGetErrorString(err)); |
|
} |
|
|
|
#ifdef __cplusplus |
|
} /* extern "C" */ |
|
#endif |
|
|
|
int cuda_gpu_clocks(struct cgpu_info *gpu) |
|
{ |
|
cudaDeviceProp props; |
|
if (cudaGetDeviceProperties(&props, gpu->gpu_id) == cudaSuccess) { |
|
gpu->gpu_clock = props.clockRate; |
|
gpu->gpu_memclock = props.memoryClockRate; |
|
gpu->gpu_mem = props.totalGlobalMem; |
|
return 0; |
|
} |
|
return -1; |
|
} |
|
|
|
// Zeitsynchronisations-Routine von cudaminer mit CPU sleep |
|
// Note: if you disable all of these calls, CPU usage will hit 100% |
|
typedef struct { double value[8]; } tsumarray; |
|
cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id) |
|
{ |
|
cudaError_t result = cudaSuccess; |
|
if (situation >= 0) |
|
{ |
|
static std::map<int, tsumarray> tsum; |
|
|
|
double a = 0.95, b = 0.05; |
|
if (tsum.find(situation) == tsum.end()) { a = 0.5; b = 0.5; } // faster initial convergence |
|
|
|
double tsync = 0.0; |
|
double tsleep = 0.95 * tsum[situation].value[thr_id]; |
|
if (cudaStreamQuery(stream) == cudaErrorNotReady) |
|
{ |
|
usleep((useconds_t)(1e6*tsleep)); |
|
struct timeval tv_start, tv_end; |
|
gettimeofday(&tv_start, NULL); |
|
result = cudaStreamSynchronize(stream); |
|
gettimeofday(&tv_end, NULL); |
|
tsync = 1e-6 * (tv_end.tv_usec-tv_start.tv_usec) + (tv_end.tv_sec-tv_start.tv_sec); |
|
} |
|
if (tsync >= 0) tsum[situation].value[thr_id] = a * tsum[situation].value[thr_id] + b * (tsleep+tsync); |
|
} |
|
else |
|
result = cudaStreamSynchronize(stream); |
|
return result; |
|
} |
|
|
|
void cudaReportHardwareFailure(int thr_id, cudaError_t err, const char* func) |
|
{ |
|
struct cgpu_info *gpu = &thr_info[thr_id].gpu; |
|
gpu->hw_errors++; |
|
gpulog(LOG_ERR, thr_id, "%s %s", func, cudaGetErrorString(err)); |
|
sleep(1); |
|
}
|
|
|