GOSTcoin support for ccminer CUDA miner project, compatible with most nvidia cards
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

381 lines
8.9 KiB

#include <stdio.h>
#include <memory.h>
#ifdef __INTELLISENSE__
/* just for vstudio code colors */
#define __CUDA_ARCH__ 500
#endif
#define TPB52 10
#define TPB50 16
#include "cuda_lyra2_vectors.h"
#include "cuda_lyra2v2_sm3.cuh"
#ifndef __CUDA_ARCH__
__device__ void *DMatrix;
#endif
#if __CUDA_ARCH__ >= 500
#define Nrow 4
#define Ncol 4
#define u64type uint2
#define vectype uint28
#define memshift 3
__device__ vectype *DMatrix;
__device__ __forceinline__
void Gfunc_v5(uint2 &a, uint2 &b, uint2 &c, uint2 &d)
{
a += b; d ^= a; d = SWAPUINT2(d);
c += d; b ^= c; b = ROR24(b);
a += b; d ^= a; d = ROR16(d);
c += d; b ^= c; b = ROR2(b, 63);
}
__device__ __forceinline__
void round_lyra_v5(vectype* s)
{
Gfunc_v5(s[0].x, s[1].x, s[2].x, s[3].x);
Gfunc_v5(s[0].y, s[1].y, s[2].y, s[3].y);
Gfunc_v5(s[0].z, s[1].z, s[2].z, s[3].z);
Gfunc_v5(s[0].w, s[1].w, s[2].w, s[3].w);
Gfunc_v5(s[0].x, s[1].y, s[2].z, s[3].w);
Gfunc_v5(s[0].y, s[1].z, s[2].w, s[3].x);
Gfunc_v5(s[0].z, s[1].w, s[2].x, s[3].y);
Gfunc_v5(s[0].w, s[1].x, s[2].y, s[3].z);
}
__device__ __forceinline__
void reduceDuplex(vectype state[4], uint32_t thread)
{
vectype state1[3];
uint32_t ps1 = (Nrow * Ncol * memshift * thread);
uint32_t ps2 = (memshift * (Ncol-1) + memshift * Ncol + Nrow * Ncol * memshift * thread);
#pragma unroll 4
for (int i = 0; i < Ncol; i++)
{
uint32_t s1 = ps1 + i*memshift;
uint32_t s2 = ps2 - i*memshift;
#pragma unroll
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix+s1)[j]);
#pragma unroll
for (int j = 0; j < 3; j++)
state[j] ^= state1[j];
round_lyra_v5(state);
#pragma unroll
for (int j = 0; j < 3; j++)
state1[j] ^= state[j];
#pragma unroll
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state1[j];
}
}
__device__ __forceinline__
void reduceDuplex50(vectype state[4], uint32_t thread)
{
uint32_t ps1 = (Nrow * Ncol * memshift * thread);
uint32_t ps2 = (memshift * (Ncol - 1) + memshift * Ncol + Nrow * Ncol * memshift * thread);
#pragma unroll 4
for (int i = 0; i < Ncol; i++)
{
uint32_t s1 = ps1 + i*memshift;
uint32_t s2 = ps2 - i*memshift;
#pragma unroll
for (int j = 0; j < 3; j++)
state[j] ^= __ldg4(&(DMatrix + s1)[j]);
round_lyra_v5(state);
#pragma unroll
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = __ldg4(&(DMatrix + s1)[j]) ^ state[j];
}
}
__device__ __forceinline__
void reduceDuplexRowSetupV2(const int rowIn, const int rowInOut, const int rowOut, vectype state[4], uint32_t thread)
{
vectype state2[3], state1[3];
uint32_t ps1 = (memshift * Ncol * rowIn + Nrow * Ncol * memshift * thread);
uint32_t ps2 = (memshift * Ncol * rowInOut + Nrow * Ncol * memshift * thread);
uint32_t ps3 = (memshift * (Ncol-1) + memshift * Ncol * rowOut + Nrow * Ncol * memshift * thread);
for (int i = 0; i < Ncol; i++)
{
uint32_t s1 = ps1 + i*memshift;
uint32_t s2 = ps2 + i*memshift;
uint32_t s3 = ps3 - i*memshift;
#if __CUDA_ARCH__ == 500
#pragma unroll
for (int j = 0; j < 3; j++)
state[j] = state[j] ^ (__ldg4(&(DMatrix + s1)[j]) + __ldg4(&(DMatrix + s2)[j]));
round_lyra_v5(state);
#pragma unroll
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix + s1)[j]);
#pragma unroll
for (int j = 0; j < 3; j++)
state2[j] = __ldg4(&(DMatrix + s2)[j]);
#pragma unroll
for (int j = 0; j < 3; j++)
{
state1[j] ^= state[j];
(DMatrix + s3)[j] = state1[j];
}
#else /* 5.2 */
#pragma unroll
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix + s1)[j]);
#pragma unroll
for (int j = 0; j < 3; j++)
state2[j] = __ldg4(&(DMatrix + s2)[j]);
#pragma unroll
for (int j = 0; j < 3; j++)
{
vectype tmp = state1[j] + state2[j];
state[j] ^= tmp;
}
round_lyra_v5(state);
#pragma unroll
for (int j = 0; j < 3; j++)
{
state1[j] ^= state[j];
(DMatrix + s3)[j] = state1[j];
}
#endif
((uint2*)state2)[0] ^= ((uint2*)state)[11];
#pragma unroll
for (int j = 0; j < 11; j++)
((uint2*)state2)[j+1] ^= ((uint2*)state)[j];
#pragma unroll
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
}
}
__device__ __forceinline__
void reduceDuplexRowtV2(const int rowIn, const int rowInOut, const int rowOut, vectype* state, uint32_t thread)
{
vectype state1[3],state2[3];
uint32_t ps1 = (memshift * Ncol * rowIn + Nrow * Ncol * memshift * thread);
uint32_t ps2 = (memshift * Ncol * rowInOut + Nrow * Ncol * memshift * thread);
uint32_t ps3 = (memshift * Ncol * rowOut + Nrow * Ncol * memshift * thread);
for (int i = 0; i < Ncol; i++)
{
uint32_t s1 = ps1 + i*memshift;
uint32_t s2 = ps2 + i*memshift;
uint32_t s3 = ps3 + i*memshift;
#pragma unroll
for (int j = 0; j < 3; j++)
state1[j] = __ldg4(&(DMatrix + s1)[j]);
#pragma unroll
for (int j = 0; j < 3; j++)
state2[j] = __ldg4(&(DMatrix + s2)[j]);
#pragma unroll
for (int j = 0; j < 3; j++)
state1[j] += state2[j];
#pragma unroll
for (int j = 0; j < 3; j++)
state[j] ^= state1[j];
round_lyra_v5(state);
((uint2*)state2)[0] ^= ((uint2*)state)[11];
#pragma unroll
for (int j = 0; j < 11; j++)
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j];
#if __CUDA_ARCH__ == 500
if (rowInOut != rowOut)
{
#pragma unroll
for (int j = 0; j < 3; j++)
(DMatrix + s3)[j] ^= state[j];
}
if (rowInOut == rowOut)
{
#pragma unroll
for (int j = 0; j < 3; j++)
state2[j] ^= state[j];
}
#else
if (rowInOut != rowOut)
{
#pragma unroll
for (int j = 0; j < 3; j++)
(DMatrix + s3)[j] ^= state[j];
} else {
#pragma unroll
for (int j = 0; j < 3; j++)
state2[j] ^= state[j];
}
#endif
#pragma unroll
for (int j = 0; j < 3; j++)
(DMatrix + s2)[j] = state2[j];
}
}
#if __CUDA_ARCH__ == 500
__global__ __launch_bounds__(TPB50, 1)
#else
__global__ __launch_bounds__(TPB52, 1)
#endif
void lyra2v2_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint2 *outputHash)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
vectype state[4];
uint28 blake2b_IV[2];
if (threadIdx.x == 0) {
((uint16*)blake2b_IV)[0] = make_uint16(
0xf3bcc908, 0x6a09e667, 0x84caa73b, 0xbb67ae85,
0xfe94f82b, 0x3c6ef372, 0x5f1d36f1, 0xa54ff53a,
0xade682d1, 0x510e527f, 0x2b3e6c1f, 0x9b05688c,
0xfb41bd6b, 0x1f83d9ab, 0x137e2179, 0x5be0cd19
);
}
if (thread < threads)
{
((uint2*)state)[0] = __ldg(&outputHash[thread]);
((uint2*)state)[1] = __ldg(&outputHash[thread + threads]);
((uint2*)state)[2] = __ldg(&outputHash[thread + 2 * threads]);
((uint2*)state)[3] = __ldg(&outputHash[thread + 3 * threads]);
state[1] = state[0];
state[2] = ((blake2b_IV)[0]);
state[3] = ((blake2b_IV)[1]);
for (int i = 0; i<12; i++)
round_lyra_v5(state);
((uint2*)state)[0].x ^= 0x20;
((uint2*)state)[1].x ^= 0x20;
((uint2*)state)[2].x ^= 0x20;
((uint2*)state)[3].x ^= 0x01;
((uint2*)state)[4].x ^= 0x04;
((uint2*)state)[5].x ^= 0x04;
((uint2*)state)[6].x ^= 0x80;
((uint2*)state)[7].y ^= 0x01000000;
for (int i = 0; i<12; i++)
round_lyra_v5(state);
uint32_t ps1 = (memshift * (Ncol - 1) + Nrow * Ncol * memshift * thread);
for (int i = 0; i < Ncol; i++)
{
const uint32_t s1 = ps1 - memshift * i;
DMatrix[s1] = state[0];
DMatrix[s1+1] = state[1];
DMatrix[s1+2] = state[2];
round_lyra_v5(state);
}
reduceDuplex50(state, thread);
reduceDuplexRowSetupV2(1, 0, 2, state, thread);
reduceDuplexRowSetupV2(2, 1, 3, state, thread);
uint32_t rowa;
int prev=3;
for (int i = 0; i < 4; i++)
{
rowa = ((uint2*)state)[0].x & 3;
reduceDuplexRowtV2(prev, rowa, i, state, thread);
prev=i;
}
const uint32_t shift = (memshift * Ncol * rowa + Nrow * Ncol * memshift * thread);
#pragma unroll
for (int j = 0; j < 3; j++)
state[j] ^= __ldg4(&(DMatrix + shift)[j]);
for (int i = 0; i < 12; i++)
round_lyra_v5(state);
outputHash[thread] = ((uint2*)state)[0];
outputHash[thread + threads] = ((uint2*)state)[1];
outputHash[thread + 2 * threads] = ((uint2*)state)[2];
outputHash[thread + 3 * threads] = ((uint2*)state)[3];
}
}
#else
__global__ void lyra2v2_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint2 *outputHash) {}
#endif
__host__
void lyra2v2_cpu_init(int thr_id, uint32_t threads, uint64_t *d_matrix)
{
// just assign the device pointer allocated in main loop
cudaMemcpyToSymbol(DMatrix, &d_matrix, sizeof(uint64_t*), 0, cudaMemcpyHostToDevice);
}
__host__
void lyra2v2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order)
{
uint32_t tpb;
if (device_sm[device_map[thr_id]] < 350)
tpb = TPB30;
else if (device_sm[device_map[thr_id]] == 350)
tpb = TPB35;
else if (device_sm[device_map[thr_id]] == 500)
tpb = TPB50;
else
tpb = TPB52;
dim3 grid((threads + tpb - 1) / tpb);
dim3 block(tpb);
if (device_sm[device_map[thr_id]] >= 500)
lyra2v2_gpu_hash_32 <<<grid, block>>> (threads, startNounce, (uint2*)d_outputHash);
else
lyra2v2_gpu_hash_32_v3 <<<grid, block>>> (threads, startNounce, (uint2*)d_outputHash);
//MyStreamSynchronize(NULL, order, thr_id);
}