1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-10 14:57:53 +00:00
ccminer/lyra2/lyra2RE.cu
Tanguy Pruvot e1c4b3042c algos: add functions to free allocated resources
Will be used later for algo switching

not really tested yet...
2015-09-25 07:51:57 +02:00

181 lines
5.6 KiB
Plaintext

extern "C" {
#include "sph/sph_blake.h"
#include "sph/sph_groestl.h"
#include "sph/sph_skein.h"
#include "sph/sph_keccak.h"
#include "lyra2/Lyra2.h"
}
#include "miner.h"
#include "cuda_helper.h"
static uint64_t* d_hash[MAX_GPUS];
//static uint64_t* d_hash2[MAX_GPUS];
extern void blake256_cpu_init(int thr_id, uint32_t threads);
extern void blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order);
extern void blake256_cpu_setBlock_80(uint32_t *pdata);
extern void keccak256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
extern void keccak256_cpu_init(int thr_id, uint32_t threads);
extern void skein256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
extern void skein256_cpu_init(int thr_id, uint32_t threads);
//extern void lyra2_cpu_init(int thr_id, uint32_t threads, uint64_t *hash);
extern void lyra2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
extern void groestl256_cpu_init(int thr_id, uint32_t threads);
extern void groestl256_cpu_free(int thr_id);
extern void groestl256_setTarget(const void *ptarget);
extern uint32_t groestl256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order);
extern uint32_t groestl256_getSecNonce(int thr_id, int num);
#ifdef _DEBUG
#define TRACE(algo) { \
if (max_nonce == 1 && pdata[19] <= 1) { \
uint32_t* debugbuf = NULL; \
cudaMallocHost(&debugbuf, 8*sizeof(uint32_t)); \
cudaMemcpy(debugbuf, d_hash[thr_id], 8*sizeof(uint32_t), cudaMemcpyDeviceToHost); \
printf("lyra %s %08x %08x %08x %08x...\n", algo, swab32(debugbuf[0]), swab32(debugbuf[1]), \
swab32(debugbuf[2]), swab32(debugbuf[3])); \
cudaFreeHost(debugbuf); \
} \
}
#else
#define TRACE(algo) {}
#endif
extern "C" void lyra2re_hash(void *state, const void *input)
{
sph_blake256_context ctx_blake;
sph_keccak256_context ctx_keccak;
sph_skein256_context ctx_skein;
sph_groestl256_context ctx_groestl;
uint32_t hashA[8], hashB[8];
sph_blake256_init(&ctx_blake);
sph_blake256(&ctx_blake, input, 80);
sph_blake256_close(&ctx_blake, hashA);
sph_keccak256_init(&ctx_keccak);
sph_keccak256(&ctx_keccak, hashA, 32);
sph_keccak256_close(&ctx_keccak, hashB);
LYRA2(hashA, 32, hashB, 32, hashB, 32, 1, 8, 8);
sph_skein256_init(&ctx_skein);
sph_skein256(&ctx_skein, hashA, 32);
sph_skein256_close(&ctx_skein, hashB);
sph_groestl256_init(&ctx_groestl);
sph_groestl256(&ctx_groestl, hashB, 32);
sph_groestl256_close(&ctx_groestl, hashA);
memcpy(state, hashA, 32);
}
static bool init[MAX_GPUS] = { 0 };
extern "C" int scanhash_lyra2(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
int intensity = (device_sm[device_map[thr_id]] >= 500 && !is_windows()) ? 18 : 17;
uint32_t throughput = device_intensity(thr_id, __func__, 1U << intensity); // 18=256*256*4;
throughput = min(throughput, max_nonce - first_nonce);
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x00ff;
if (!init[thr_id])
{
cudaSetDevice(device_map[thr_id]);
blake256_cpu_init(thr_id, throughput);
keccak256_cpu_init(thr_id,throughput);
skein256_cpu_init(thr_id, throughput);
groestl256_cpu_init(thr_id, throughput);
// DMatrix
// cudaMalloc(&d_hash2[thr_id], (size_t)16 * 8 * 8 * sizeof(uint64_t) * throughput);
// lyra2_cpu_init(thr_id, throughput, d_hash2[thr_id]);
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t)32 * throughput));
init[thr_id] = true;
}
uint32_t endiandata[20];
for (int k=0; k < 20; k++)
be32enc(&endiandata[k], pdata[k]);
blake256_cpu_setBlock_80(pdata);
groestl256_setTarget(ptarget);
do {
int order = 0;
uint32_t foundNonce;
*hashes_done = pdata[19] - first_nonce + throughput;
blake256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
keccak256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
lyra2_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
skein256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
TRACE("S")
foundNonce = groestl256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
if (foundNonce != UINT32_MAX)
{
uint32_t _ALIGN(64) vhash64[8];
be32enc(&endiandata[19], foundNonce);
lyra2re_hash(vhash64, endiandata);
if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) {
int res = 1;
uint32_t secNonce = groestl256_getSecNonce(thr_id, 1);
bn_store_hash_target_ratio(vhash64, ptarget, work);
if (secNonce != UINT32_MAX)
{
be32enc(&endiandata[19], secNonce);
lyra2re_hash(vhash64, endiandata);
if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) {
if (opt_debug)
applog(LOG_BLUE, "GPU #%d: found second nonce %08x", device_map[thr_id], secNonce);
if (bn_hash_target_ratio(vhash64, ptarget) > work->shareratio)
bn_store_hash_target_ratio(vhash64, ptarget, work);
pdata[21] = secNonce;
res++;
}
}
pdata[19] = foundNonce;
return res;
} else {
applog(LOG_WARNING, "GPU #%d: result for %08x does not validate on CPU!", device_map[thr_id], foundNonce);
}
}
pdata[19] += throughput;
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart);
return 0;
}
// cleanup
extern "C" void free_lyra2(int thr_id)
{
if (!init[thr_id])
return;
cudaSetDevice(device_map[thr_id]);
cudaFree(d_hash[thr_id]);
groestl256_cpu_free(thr_id);
init[thr_id] = false;
cudaDeviceSynchronize();
}