mirror of https://github.com/GOSTSec/ccminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
907 lines
33 KiB
907 lines
33 KiB
// |
|
// Kernel that runs best on Fermi devices |
|
// |
|
// - shared memory use reduced by nearly factor 2 over legacy kernel |
|
// by transferring only half work units (16 x uint32_t) at once. |
|
// - uses ulong2/uint4 based memory transfers (each thread moves 16 bytes), |
|
// allowing for shorter unrolled loops. This relies on Fermi's better |
|
// memory controllers to get high memory troughput. |
|
// |
|
// NOTE: compile this .cu module for compute_20,sm_20 with --maxrregcount=63 |
|
// |
|
// TODO: batch-size support for this kernel |
|
// |
|
|
|
#include <map> |
|
|
|
#include "cuda_runtime.h" |
|
#include "miner.h" |
|
|
|
#include "salsa_kernel.h" |
|
#include "fermi_kernel.h" |
|
|
|
#define THREADS_PER_WU 1 // single thread per hash |
|
|
|
#define TEXWIDTH 32768 |
|
|
|
// forward references |
|
template <int ALGO> __global__ void fermi_scrypt_core_kernelA(uint32_t *g_idata, unsigned int N); |
|
template <int ALGO> __global__ void fermi_scrypt_core_kernelB(uint32_t *g_odata, unsigned int N); |
|
template <int ALGO, int TEX_DIM> __global__ void fermi_scrypt_core_kernelB_tex(uint32_t *g_odata, unsigned int N); |
|
template <int ALGO> __global__ void fermi_scrypt_core_kernelA_LG(uint32_t *g_idata, unsigned int N, unsigned int LOOKUP_GAP); |
|
template <int ALGO> __global__ void fermi_scrypt_core_kernelB_LG(uint32_t *g_odata, unsigned int N, unsigned int LOOKUP_GAP); |
|
template <int ALGO, int TEX_DIM> __global__ void fermi_scrypt_core_kernelB_LG_tex(uint32_t *g_odata, unsigned int N, unsigned int LOOKUP_GAP); |
|
|
|
// scratchbuf constants (pointers to scratch buffer for each warp, i.e. 32 hashes) |
|
__constant__ uint32_t* c_V[TOTAL_WARP_LIMIT]; |
|
|
|
// using texture references for the "tex" variants of the B kernels |
|
texture<uint4, 1, cudaReadModeElementType> texRef1D_4_V; |
|
texture<uint4, 2, cudaReadModeElementType> texRef2D_4_V; |
|
|
|
FermiKernel::FermiKernel() : KernelInterface() |
|
{ |
|
} |
|
|
|
bool FermiKernel::bindtexture_1D(uint32_t *d_V, size_t size) |
|
{ |
|
cudaChannelFormatDesc channelDesc4 = cudaCreateChannelDesc<uint4>(); |
|
texRef1D_4_V.normalized = 0; |
|
texRef1D_4_V.filterMode = cudaFilterModePoint; |
|
texRef1D_4_V.addressMode[0] = cudaAddressModeClamp; |
|
checkCudaErrors(cudaBindTexture(NULL, &texRef1D_4_V, d_V, &channelDesc4, size)); |
|
return true; |
|
} |
|
|
|
bool FermiKernel::bindtexture_2D(uint32_t *d_V, int width, int height, size_t pitch) |
|
{ |
|
cudaChannelFormatDesc channelDesc4 = cudaCreateChannelDesc<uint4>(); |
|
texRef2D_4_V.normalized = 0; |
|
texRef2D_4_V.filterMode = cudaFilterModePoint; |
|
texRef2D_4_V.addressMode[0] = cudaAddressModeClamp; |
|
texRef2D_4_V.addressMode[1] = cudaAddressModeClamp; |
|
// maintain texture width of TEXWIDTH (max. limit is 65000) |
|
while (width > TEXWIDTH) { width /= 2; height *= 2; pitch /= 2; } |
|
while (width < TEXWIDTH) { width *= 2; height = (height+1)/2; pitch *= 2; } |
|
// fprintf(stderr, "total size: %u, %u bytes\n", pitch * height, width * sizeof(uint32_t) * 4 * height); |
|
// fprintf(stderr, "binding width width=%d, height=%d, pitch=%d\n", width, height,pitch); |
|
checkCudaErrors(cudaBindTexture2D(NULL, &texRef2D_4_V, d_V, &channelDesc4, width, height, pitch)); |
|
return true; |
|
} |
|
|
|
bool FermiKernel::unbindtexture_1D() |
|
{ |
|
checkCudaErrors(cudaUnbindTexture(texRef1D_4_V)); |
|
return true; |
|
} |
|
|
|
bool FermiKernel::unbindtexture_2D() |
|
{ |
|
checkCudaErrors(cudaUnbindTexture(texRef2D_4_V)); |
|
return true; |
|
} |
|
|
|
void FermiKernel::set_scratchbuf_constants(int MAXWARPS, uint32_t** h_V) |
|
{ |
|
checkCudaErrors(cudaMemcpyToSymbol(c_V, h_V, MAXWARPS*sizeof(uint32_t*), 0, cudaMemcpyHostToDevice)); |
|
} |
|
|
|
bool FermiKernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int thr_id, cudaStream_t stream, uint32_t* d_idata, uint32_t* d_odata, unsigned int N, unsigned int LOOKUP_GAP, bool interactive, bool benchmark, int texture_cache) |
|
{ |
|
bool success = true; |
|
|
|
int shared = WARPS_PER_BLOCK * WU_PER_WARP * (16+4) * sizeof(uint32_t); |
|
|
|
// First phase: Sequential writes to scratchpad. |
|
|
|
if (LOOKUP_GAP == 1) { |
|
if (IS_SCRYPT()) fermi_scrypt_core_kernelA<A_SCRYPT><<< grid, threads, shared, stream >>>(d_idata, N); |
|
if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelA<A_SCRYPT_JANE><<< grid, threads, shared, stream >>>(d_idata, N); |
|
} else { |
|
if (IS_SCRYPT()) fermi_scrypt_core_kernelA_LG<A_SCRYPT><<< grid, threads, shared, stream >>>(d_idata, N, LOOKUP_GAP); |
|
if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelA_LG<A_SCRYPT_JANE><<< grid, threads, shared, stream >>>(d_idata, N, LOOKUP_GAP); |
|
} |
|
|
|
// Second phase: Random read access from scratchpad. |
|
|
|
if (LOOKUP_GAP == 1) { |
|
if (texture_cache) { |
|
if (texture_cache == 1) { |
|
if (IS_SCRYPT()) fermi_scrypt_core_kernelB_tex<A_SCRYPT,1><<< grid, threads, shared, stream >>>(d_odata, N); |
|
if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB_tex<A_SCRYPT_JANE,1><<< grid, threads, shared, stream >>>(d_odata, N); |
|
} else if (texture_cache == 2) { |
|
if (IS_SCRYPT()) fermi_scrypt_core_kernelB_tex<A_SCRYPT,2><<< grid, threads, shared, stream >>>(d_odata, N); |
|
if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB_tex<A_SCRYPT_JANE,2><<< grid, threads, shared, stream >>>(d_odata, N); |
|
} |
|
else success = false; |
|
} else { |
|
if (IS_SCRYPT()) fermi_scrypt_core_kernelB<A_SCRYPT><<< grid, threads, shared, stream >>>(d_odata, N); |
|
if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB<A_SCRYPT_JANE><<< grid, threads, shared, stream >>>(d_odata, N); |
|
} |
|
} else { |
|
if (texture_cache) { |
|
if (texture_cache == 1) { |
|
if (IS_SCRYPT()) fermi_scrypt_core_kernelB_LG_tex<A_SCRYPT,1><<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP); |
|
if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB_LG_tex<A_SCRYPT_JANE,1><<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP); |
|
} else if (texture_cache == 2) { |
|
if (IS_SCRYPT()) fermi_scrypt_core_kernelB_LG_tex<A_SCRYPT,2><<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP); |
|
if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB_LG_tex<A_SCRYPT_JANE,2><<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP); |
|
} |
|
else success = false; |
|
} else { |
|
if (IS_SCRYPT()) fermi_scrypt_core_kernelB_LG<A_SCRYPT><<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP); |
|
if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB_LG<A_SCRYPT_JANE><<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP); |
|
} |
|
} |
|
|
|
return success; |
|
} |
|
|
|
#if 0 |
|
|
|
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) |
|
|
|
#define QUARTER(a,b,c,d) \ |
|
a += b; d ^= a; d = ROTL(d,16); \ |
|
c += d; b ^= c; b = ROTL(b,12); \ |
|
a += b; d ^= a; d = ROTL(d,8); \ |
|
c += d; b ^= c; b = ROTL(b,7); |
|
|
|
static __device__ void xor_chacha8(uint4 *B, uint4 *C) |
|
{ |
|
uint32_t x[16]; |
|
x[0]=(B[0].x ^= C[0].x); |
|
x[1]=(B[0].y ^= C[0].y); |
|
x[2]=(B[0].z ^= C[0].z); |
|
x[3]=(B[0].w ^= C[0].w); |
|
x[4]=(B[1].x ^= C[1].x); |
|
x[5]=(B[1].y ^= C[1].y); |
|
x[6]=(B[1].z ^= C[1].z); |
|
x[7]=(B[1].w ^= C[1].w); |
|
x[8]=(B[2].x ^= C[2].x); |
|
x[9]=(B[2].y ^= C[2].y); |
|
x[10]=(B[2].z ^= C[2].z); |
|
x[11]=(B[2].w ^= C[2].w); |
|
x[12]=(B[3].x ^= C[3].x); |
|
x[13]=(B[3].y ^= C[3].y); |
|
x[14]=(B[3].z ^= C[3].z); |
|
x[15]=(B[3].w ^= C[3].w); |
|
|
|
/* Operate on columns. */ |
|
QUARTER( x[0], x[4], x[ 8], x[12] ) |
|
QUARTER( x[1], x[5], x[ 9], x[13] ) |
|
QUARTER( x[2], x[6], x[10], x[14] ) |
|
QUARTER( x[3], x[7], x[11], x[15] ) |
|
|
|
/* Operate on diagonals */ |
|
QUARTER( x[0], x[5], x[10], x[15] ) |
|
QUARTER( x[1], x[6], x[11], x[12] ) |
|
QUARTER( x[2], x[7], x[ 8], x[13] ) |
|
QUARTER( x[3], x[4], x[ 9], x[14] ) |
|
|
|
/* Operate on columns. */ |
|
QUARTER( x[0], x[4], x[ 8], x[12] ) |
|
QUARTER( x[1], x[5], x[ 9], x[13] ) |
|
QUARTER( x[2], x[6], x[10], x[14] ) |
|
QUARTER( x[3], x[7], x[11], x[15] ) |
|
|
|
/* Operate on diagonals */ |
|
QUARTER( x[0], x[5], x[10], x[15] ) |
|
QUARTER( x[1], x[6], x[11], x[12] ) |
|
QUARTER( x[2], x[7], x[ 8], x[13] ) |
|
QUARTER( x[3], x[4], x[ 9], x[14] ) |
|
|
|
/* Operate on columns. */ |
|
QUARTER( x[0], x[4], x[ 8], x[12] ) |
|
QUARTER( x[1], x[5], x[ 9], x[13] ) |
|
QUARTER( x[2], x[6], x[10], x[14] ) |
|
QUARTER( x[3], x[7], x[11], x[15] ) |
|
|
|
/* Operate on diagonals */ |
|
QUARTER( x[0], x[5], x[10], x[15] ) |
|
QUARTER( x[1], x[6], x[11], x[12] ) |
|
QUARTER( x[2], x[7], x[ 8], x[13] ) |
|
QUARTER( x[3], x[4], x[ 9], x[14] ) |
|
|
|
/* Operate on columns. */ |
|
QUARTER( x[0], x[4], x[ 8], x[12] ) |
|
QUARTER( x[1], x[5], x[ 9], x[13] ) |
|
QUARTER( x[2], x[6], x[10], x[14] ) |
|
QUARTER( x[3], x[7], x[11], x[15] ) |
|
|
|
/* Operate on diagonals */ |
|
QUARTER( x[0], x[5], x[10], x[15] ) |
|
QUARTER( x[1], x[6], x[11], x[12] ) |
|
QUARTER( x[2], x[7], x[ 8], x[13] ) |
|
QUARTER( x[3], x[4], x[ 9], x[14] ) |
|
|
|
B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7]; |
|
B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15]; |
|
} |
|
|
|
#else |
|
|
|
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) |
|
|
|
#define ADD4(d1,d2,d3,d4,s1,s2,s3,s4) \ |
|
d1 += s1; d2 += s2; d3 += s3; d4 += s4; |
|
|
|
#define XOR4(d1,d2,d3,d4,s1,s2,s3,s4) \ |
|
d1 ^= s1; d2 ^= s2; d3 ^= s3; d4 ^= s4; |
|
|
|
#define ROTL4(d1,d2,d3,d4,amt) \ |
|
d1 = ROTL(d1, amt); d2 = ROTL(d2, amt); d3 = ROTL(d3, amt); d4 = ROTL(d4, amt); |
|
|
|
#define QROUND(a1,a2,a3,a4, b1,b2,b3,b4, c1,c2,c3,c4, amt) \ |
|
ADD4 (a1,a2,a3,a4, c1,c2,c3,c4) \ |
|
XOR4 (b1,b2,b3,b4, a1,a2,a3,a4) \ |
|
ROTL4(b1,b2,b3,b4, amt) |
|
|
|
static __device__ void xor_chacha8(uint4 *B, uint4 *C) |
|
{ |
|
uint32_t x[16]; |
|
x[0]=(B[0].x ^= C[0].x); |
|
x[1]=(B[0].y ^= C[0].y); |
|
x[2]=(B[0].z ^= C[0].z); |
|
x[3]=(B[0].w ^= C[0].w); |
|
x[4]=(B[1].x ^= C[1].x); |
|
x[5]=(B[1].y ^= C[1].y); |
|
x[6]=(B[1].z ^= C[1].z); |
|
x[7]=(B[1].w ^= C[1].w); |
|
x[8]=(B[2].x ^= C[2].x); |
|
x[9]=(B[2].y ^= C[2].y); |
|
x[10]=(B[2].z ^= C[2].z); |
|
x[11]=(B[2].w ^= C[2].w); |
|
x[12]=(B[3].x ^= C[3].x); |
|
x[13]=(B[3].y ^= C[3].y); |
|
x[14]=(B[3].z ^= C[3].z); |
|
x[15]=(B[3].w ^= C[3].w); |
|
|
|
/* Operate on columns. */ |
|
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16); |
|
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12); |
|
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8); |
|
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7); |
|
|
|
/* Operate on diagonals */ |
|
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16); |
|
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12); |
|
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8); |
|
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7); |
|
|
|
/* Operate on columns. */ |
|
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16); |
|
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12); |
|
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8); |
|
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7); |
|
|
|
/* Operate on diagonals */ |
|
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16); |
|
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12); |
|
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8); |
|
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7); |
|
|
|
/* Operate on columns. */ |
|
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16); |
|
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12); |
|
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8); |
|
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7); |
|
|
|
/* Operate on diagonals */ |
|
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16); |
|
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12); |
|
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8); |
|
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7); |
|
|
|
/* Operate on columns. */ |
|
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16); |
|
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12); |
|
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8); |
|
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7); |
|
|
|
/* Operate on diagonals */ |
|
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16); |
|
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12); |
|
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8); |
|
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7); |
|
|
|
B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7]; |
|
B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15]; |
|
} |
|
|
|
#endif |
|
|
|
#define ROTL7(a0,a1,a2,a3,a00,a10,a20,a30){\ |
|
a0^=(((a00)<<7) | ((a00)>>25) );\ |
|
a1^=(((a10)<<7) | ((a10)>>25) );\ |
|
a2^=(((a20)<<7) | ((a20)>>25) );\ |
|
a3^=(((a30)<<7) | ((a30)>>25) );\ |
|
};\ |
|
|
|
#define ROTL9(a0,a1,a2,a3,a00,a10,a20,a30){\ |
|
a0^=(((a00)<<9) | ((a00)>>23) );\ |
|
a1^=(((a10)<<9) | ((a10)>>23) );\ |
|
a2^=(((a20)<<9) | ((a20)>>23) );\ |
|
a3^=(((a30)<<9) | ((a30)>>23) );\ |
|
};\ |
|
|
|
#define ROTL13(a0,a1,a2,a3,a00,a10,a20,a30){\ |
|
a0^=(((a00)<<13) | ((a00)>>19) );\ |
|
a1^=(((a10)<<13) | ((a10)>>19) );\ |
|
a2^=(((a20)<<13) | ((a20)>>19) );\ |
|
a3^=(((a30)<<13) | ((a30)>>19) );\ |
|
};\ |
|
|
|
#define ROTL18(a0,a1,a2,a3,a00,a10,a20,a30){\ |
|
a0^=(((a00)<<18) | ((a00)>>14) );\ |
|
a1^=(((a10)<<18) | ((a10)>>14) );\ |
|
a2^=(((a20)<<18) | ((a20)>>14) );\ |
|
a3^=(((a30)<<18) | ((a30)>>14) );\ |
|
};\ |
|
|
|
static __device__ void xor_salsa8(uint4 *B, uint4 *C) |
|
{ |
|
uint32_t x[16]; |
|
x[0]=(B[0].x ^= C[0].x); |
|
x[1]=(B[0].y ^= C[0].y); |
|
x[2]=(B[0].z ^= C[0].z); |
|
x[3]=(B[0].w ^= C[0].w); |
|
x[4]=(B[1].x ^= C[1].x); |
|
x[5]=(B[1].y ^= C[1].y); |
|
x[6]=(B[1].z ^= C[1].z); |
|
x[7]=(B[1].w ^= C[1].w); |
|
x[8]=(B[2].x ^= C[2].x); |
|
x[9]=(B[2].y ^= C[2].y); |
|
x[10]=(B[2].z ^= C[2].z); |
|
x[11]=(B[2].w ^= C[2].w); |
|
x[12]=(B[3].x ^= C[3].x); |
|
x[13]=(B[3].y ^= C[3].y); |
|
x[14]=(B[3].z ^= C[3].z); |
|
x[15]=(B[3].w ^= C[3].w); |
|
|
|
/* Operate on columns. */ |
|
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]); |
|
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]); |
|
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]); |
|
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]); |
|
|
|
/* Operate on rows. */ |
|
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]); |
|
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]); |
|
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]); |
|
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]); |
|
|
|
/* Operate on columns. */ |
|
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]); |
|
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]); |
|
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]); |
|
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]); |
|
|
|
/* Operate on rows. */ |
|
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]); |
|
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]); |
|
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]); |
|
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]); |
|
|
|
/* Operate on columns. */ |
|
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]); |
|
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]); |
|
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]); |
|
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]); |
|
|
|
/* Operate on rows. */ |
|
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]); |
|
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]); |
|
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]); |
|
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]); |
|
|
|
/* Operate on columns. */ |
|
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]); |
|
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]); |
|
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]); |
|
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]); |
|
|
|
/* Operate on rows. */ |
|
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]); |
|
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]); |
|
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]); |
|
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]); |
|
|
|
B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7]; |
|
B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15]; |
|
} |
|
|
|
static __device__ __forceinline__ uint4& operator^=(uint4& left, const uint4& right) |
|
{ |
|
left.x ^= right.x; |
|
left.y ^= right.y; |
|
left.z ^= right.z; |
|
left.w ^= right.w; |
|
return left; |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
//! Scrypt core kernel for Fermi class devices. |
|
//! @param g_idata input data in global memory |
|
//! @param g_odata output data in global memory |
|
//////////////////////////////////////////////////////////////////////////////// |
|
template <int ALGO> __global__ |
|
void fermi_scrypt_core_kernelA(uint32_t *g_idata, unsigned int N) |
|
{ |
|
extern __shared__ unsigned char x[]; |
|
uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x; |
|
|
|
int warpIdx = threadIdx.x / warpSize; |
|
int warpThread = threadIdx.x % warpSize; |
|
const unsigned int LOOKUP_GAP = 1; |
|
|
|
// variables supporting the large memory transaction magic |
|
unsigned int Y = warpThread/4; |
|
unsigned int Z = 4*(warpThread%4); |
|
|
|
// add block specific offsets |
|
int WARPS_PER_BLOCK = blockDim.x / 32; |
|
int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP; |
|
g_idata += 32 * offset; |
|
uint32_t * V = c_V[offset / WU_PER_WARP] + SCRATCH*Y + Z; |
|
|
|
// registers to store an entire work unit |
|
uint4 B[4], C[4]; |
|
|
|
uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z]; |
|
uint32_t *XX = X[warpIdx][warpThread]; |
|
|
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)(&V[SCRATCH*wu])) = *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&g_idata[32*(wu+Y)+Z])); |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]); |
|
|
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)(&V[SCRATCH*wu+16])) = *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&g_idata[32*(wu+Y)+16+Z])); |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]); |
|
|
|
for (int i = 1; i < N; i++) { |
|
|
|
switch(ALGO) { |
|
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; |
|
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; |
|
} |
|
|
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx]; |
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)(&V[SCRATCH*wu + i*32])) = *((ulonglong2*)XB[wu]); |
|
|
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx]; |
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)(&V[SCRATCH*wu + i*32 + 16])) = *((ulonglong2*)XB[wu]); |
|
} |
|
} |
|
|
|
template <int ALGO> __global__ |
|
void fermi_scrypt_core_kernelB(uint32_t *g_odata, unsigned int N) |
|
{ |
|
extern __shared__ unsigned char x[]; |
|
uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x; |
|
|
|
int warpIdx = threadIdx.x / warpSize; |
|
int warpThread = threadIdx.x % warpSize; |
|
const unsigned int LOOKUP_GAP = 1; |
|
|
|
// variables supporting the large memory transaction magic |
|
unsigned int Y = warpThread/4; |
|
unsigned int Z = 4*(warpThread%4); |
|
|
|
// add block specific offsets |
|
int WARPS_PER_BLOCK = blockDim.x / 32; |
|
int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP; |
|
g_odata += 32 * offset; |
|
uint32_t * V = c_V[offset / WU_PER_WARP] + SCRATCH*Y + Z; |
|
|
|
// registers to store an entire work unit |
|
uint4 B[4], C[4]; |
|
|
|
uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z]; |
|
uint32_t *XX = X[warpIdx][warpThread]; |
|
|
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + (N-1)*32])); |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]); |
|
|
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + (N-1)*32 + 16])); |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]); |
|
|
|
switch(ALGO) { |
|
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; |
|
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; |
|
} |
|
|
|
for (int i = 0; i < N; i++) { |
|
|
|
XX[16] = 32 * (C[0].x & (N-1)); |
|
|
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + XB[wu][16-Z]])); |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) B[idx] ^= *((uint4*)&XX[4*idx]); |
|
|
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + XB[wu][16-Z] + 16])); |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) C[idx] ^= *((uint4*)&XX[4*idx]); |
|
|
|
switch(ALGO) { |
|
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; |
|
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; |
|
} |
|
} |
|
|
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx]; |
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)(&g_odata[32*(wu+Y)+Z])) = *((ulonglong2*)XB[wu]); |
|
|
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx]; |
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)(&g_odata[32*(wu+Y)+16+Z])) = *((ulonglong2*)XB[wu]); |
|
|
|
} |
|
|
|
template <int ALGO, int TEX_DIM> __global__ void |
|
fermi_scrypt_core_kernelB_tex(uint32_t *g_odata, unsigned int N) |
|
{ |
|
extern __shared__ unsigned char x[]; |
|
uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x; |
|
|
|
int warpIdx = threadIdx.x / warpSize; |
|
int warpThread = threadIdx.x % warpSize; |
|
const unsigned int LOOKUP_GAP = 1; |
|
|
|
// variables supporting the large memory transaction magic |
|
unsigned int Y = warpThread/4; |
|
unsigned int Z = 4*(warpThread%4); |
|
|
|
// add block specific offsets |
|
int WARPS_PER_BLOCK = blockDim.x / 32; |
|
int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP; |
|
g_odata += 32 * offset; |
|
|
|
// registers to store an entire work unit |
|
uint4 B[4], C[4]; |
|
|
|
uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z]; |
|
uint32_t *XX = X[warpIdx][warpThread]; |
|
|
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + (N-1)*32 + Z)/4; |
|
*((uint4*)XB[wu]) = ((TEX_DIM == 1) ? |
|
tex1Dfetch(texRef1D_4_V, loc) : |
|
tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); } |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]); |
|
|
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + (N-1)*32 + 16+Z)/4; |
|
*((uint4*)XB[wu]) = ((TEX_DIM == 1) ? |
|
tex1Dfetch(texRef1D_4_V, loc) : |
|
tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); } |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]); |
|
|
|
switch(ALGO) { |
|
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; |
|
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; |
|
} |
|
|
|
for (int i = 0; i < N; i++) { |
|
|
|
XX[16] = 32 * (C[0].x & (N-1)); |
|
|
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + XB[wu][16-Z] + Z)/4; |
|
*((uint4*)XB[wu]) = ((TEX_DIM == 1) ? |
|
tex1Dfetch(texRef1D_4_V, loc) : |
|
tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); } |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) B[idx] ^= *((uint4*)&XX[4*idx]); |
|
|
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + XB[wu][16-Z] + 16+Z)/4; |
|
*((uint4*)XB[wu]) = ((TEX_DIM == 1) ? |
|
tex1Dfetch(texRef1D_4_V, loc) : |
|
tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); } |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) C[idx] ^= *((uint4*)&XX[4*idx]); |
|
|
|
switch(ALGO) { |
|
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; |
|
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; |
|
} |
|
} |
|
|
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx]; |
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)(&g_odata[32*(wu+Y)+Z])) = *((ulonglong2*)XB[wu]); |
|
|
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx]; |
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)(&g_odata[32*(wu+Y)+16+Z])) = *((ulonglong2*)XB[wu]); |
|
} |
|
|
|
// |
|
// Lookup-Gap variations of the above functions |
|
// |
|
|
|
template <int ALGO> __global__ void |
|
fermi_scrypt_core_kernelA_LG(uint32_t *g_idata, unsigned int N, unsigned int LOOKUP_GAP) |
|
{ |
|
extern __shared__ unsigned char x[]; |
|
uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x; |
|
|
|
int warpIdx = threadIdx.x / warpSize; |
|
int warpThread = threadIdx.x % warpSize; |
|
|
|
// variables supporting the large memory transaction magic |
|
unsigned int Y = warpThread/4; |
|
unsigned int Z = 4*(warpThread%4); |
|
|
|
// add block specific offsets |
|
int WARPS_PER_BLOCK = blockDim.x / 32; |
|
int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP; |
|
g_idata += 32 * offset; |
|
uint32_t * V = c_V[offset / WU_PER_WARP] + SCRATCH*Y + Z; |
|
|
|
// registers to store an entire work unit |
|
uint4 B[4], C[4]; |
|
|
|
uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z]; |
|
uint32_t *XX = X[warpIdx][warpThread]; |
|
|
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)(&V[SCRATCH*wu])) = *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&g_idata[32*(wu+Y)+Z])); |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]); |
|
|
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)(&V[SCRATCH*wu+16])) = *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&g_idata[32*(wu+Y)+16+Z])); |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]); |
|
|
|
for (int i = 1; i < N; i++) { |
|
|
|
switch(ALGO) { |
|
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; |
|
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; |
|
} |
|
|
|
if (i % LOOKUP_GAP == 0) { |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx]; |
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)(&V[SCRATCH*wu + (i/LOOKUP_GAP)*32])) = *((ulonglong2*)XB[wu]); |
|
|
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx]; |
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)(&V[SCRATCH*wu + (i/LOOKUP_GAP)*32 + 16])) = *((ulonglong2*)XB[wu]); |
|
} |
|
} |
|
} |
|
|
|
template <int ALGO> __global__ void |
|
fermi_scrypt_core_kernelB_LG(uint32_t *g_odata, unsigned int N, unsigned int LOOKUP_GAP) |
|
{ |
|
extern __shared__ unsigned char x[]; |
|
uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x; |
|
|
|
int warpIdx = threadIdx.x / warpSize; |
|
int warpThread = threadIdx.x % warpSize; |
|
|
|
// variables supporting the large memory transaction magic |
|
unsigned int Y = warpThread/4; |
|
unsigned int Z = 4*(warpThread%4); |
|
|
|
// add block specific offsets |
|
int WARPS_PER_BLOCK = blockDim.x / 32; |
|
int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP; |
|
g_odata += 32 * offset; |
|
uint32_t * V = c_V[offset / WU_PER_WARP] + SCRATCH*Y + Z; |
|
|
|
// registers to store an entire work unit |
|
uint4 B[4], C[4]; |
|
|
|
uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z]; |
|
uint32_t *XX = X[warpIdx][warpThread]; |
|
|
|
uint32_t pos = (N-1)/LOOKUP_GAP; uint32_t loop = 1 + (N-1)-pos*LOOKUP_GAP; |
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + pos*32])); |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]); |
|
|
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + pos*32 + 16])); |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]); |
|
|
|
while (loop--) |
|
switch(ALGO) { |
|
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; |
|
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; |
|
} |
|
|
|
for (int i = 0; i < N; i++) { |
|
|
|
uint32_t j = C[0].x & (N-1); |
|
uint32_t pos = j / LOOKUP_GAP; uint32_t loop = j - pos*LOOKUP_GAP; |
|
XX[16] = 32 * pos; |
|
|
|
uint4 b[4], c[4]; |
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + XB[wu][16-Z]])); |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) b[idx] = *((uint4*)&XX[4*idx]); |
|
|
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + XB[wu][16-Z] + 16])); |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) c[idx] = *((uint4*)&XX[4*idx]); |
|
|
|
while (loop--) |
|
switch(ALGO) { |
|
case A_SCRYPT: xor_salsa8(b, c); xor_salsa8(c, b); break; |
|
case A_SCRYPT_JANE: xor_chacha8(b, c); xor_chacha8(c, b); break; |
|
} |
|
|
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) B[idx] ^= b[idx]; |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) C[idx] ^= c[idx]; |
|
|
|
switch(ALGO) { |
|
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; |
|
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; |
|
} |
|
} |
|
|
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx]; |
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)(&g_odata[32*(wu+Y)+Z])) = *((ulonglong2*)XB[wu]); |
|
|
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx]; |
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)(&g_odata[32*(wu+Y)+16+Z])) = *((ulonglong2*)XB[wu]); |
|
|
|
} |
|
|
|
template <int ALGO, int TEX_DIM> __global__ void |
|
fermi_scrypt_core_kernelB_LG_tex(uint32_t *g_odata, unsigned int N, unsigned int LOOKUP_GAP) |
|
{ |
|
extern __shared__ unsigned char x[]; |
|
uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x; |
|
|
|
int warpIdx = threadIdx.x / warpSize; |
|
int warpThread = threadIdx.x % warpSize; |
|
|
|
// variables supporting the large memory transaction magic |
|
unsigned int Y = warpThread/4; |
|
unsigned int Z = 4*(warpThread%4); |
|
|
|
// add block specific offsets |
|
int WARPS_PER_BLOCK = blockDim.x / 32; |
|
int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP; |
|
g_odata += 32 * offset; |
|
|
|
// registers to store an entire work unit |
|
uint4 B[4], C[4]; |
|
|
|
uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z]; |
|
uint32_t *XX = X[warpIdx][warpThread]; |
|
|
|
uint32_t pos = (N-1)/LOOKUP_GAP; uint32_t loop = 1 + (N-1)-pos*LOOKUP_GAP; |
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + pos*32 + Z)/4; |
|
*((uint4*)XB[wu]) = ((TEX_DIM == 1) ? |
|
tex1Dfetch(texRef1D_4_V, loc) : |
|
tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); } |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]); |
|
|
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + pos*32 + 16+Z)/4; |
|
*((uint4*)XB[wu]) = ((TEX_DIM == 1) ? |
|
tex1Dfetch(texRef1D_4_V, loc) : |
|
tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); } |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]); |
|
|
|
while (loop--) |
|
switch(ALGO) { |
|
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; |
|
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; |
|
} |
|
|
|
for (int i = 0; i < N; i++) { |
|
|
|
uint32_t j = C[0].x & (N-1); |
|
uint32_t pos = j / LOOKUP_GAP; uint32_t loop = j - pos*LOOKUP_GAP; |
|
XX[16] = 32 * pos; |
|
|
|
uint4 b[4], c[4]; |
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + XB[wu][16-Z] + Z)/4; |
|
*((uint4*)XB[wu]) = ((TEX_DIM == 1) ? |
|
tex1Dfetch(texRef1D_4_V, loc) : |
|
tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); } |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) b[idx] = *((uint4*)&XX[4*idx]); |
|
|
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + XB[wu][16-Z] + 16+Z)/4; |
|
*((uint4*)XB[wu]) = ((TEX_DIM == 1) ? |
|
tex1Dfetch(texRef1D_4_V, loc) : |
|
tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); } |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) c[idx] = *((uint4*)&XX[4*idx]); |
|
|
|
while (loop--) |
|
switch(ALGO) { |
|
case A_SCRYPT: xor_salsa8(b, c); xor_salsa8(c, b); break; |
|
case A_SCRYPT_JANE: xor_chacha8(b, c); xor_chacha8(c, b); break; |
|
} |
|
|
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) B[idx] ^= b[idx]; |
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) C[idx] ^= c[idx]; |
|
|
|
switch(ALGO) { |
|
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; |
|
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; |
|
} |
|
} |
|
|
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx]; |
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)(&g_odata[32*(wu+Y)+Z])) = *((ulonglong2*)XB[wu]); |
|
|
|
#pragma unroll 4 |
|
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx]; |
|
#pragma unroll 4 |
|
for (int wu=0; wu < 32; wu+=8) |
|
*((ulonglong2*)(&g_odata[32*(wu+Y)+16+Z])) = *((ulonglong2*)XB[wu]); |
|
}
|
|
|