mirror of
https://github.com/GOSTSec/ccminer
synced 2025-01-10 06:47:53 +00:00
a237601747
set schedule flags to reduce linux cpu usage without MyStreamSynchronize()
289 lines
9.0 KiB
Plaintext
289 lines
9.0 KiB
Plaintext
extern "C"
|
|
{
|
|
#include "sph/sph_keccak.h"
|
|
#include "sph/sph_blake.h"
|
|
#include "sph/sph_groestl.h"
|
|
#include "sph/sph_jh.h"
|
|
#include "sph/sph_skein.h"
|
|
}
|
|
|
|
#include "miner.h"
|
|
#include "cuda_helper.h"
|
|
#include "quark/cuda_quark.h"
|
|
|
|
static uint32_t *d_hash[MAX_GPUS] = { 0 };
|
|
|
|
// Speicher zur Generierung der Noncevektoren für die bedingten Hashes
|
|
static uint32_t *d_jackpotNonces[MAX_GPUS] = { 0 };
|
|
static uint32_t *d_branch1Nonces[MAX_GPUS] = { 0 };
|
|
static uint32_t *d_branch2Nonces[MAX_GPUS] = { 0 };
|
|
static uint32_t *d_branch3Nonces[MAX_GPUS] = { 0 };
|
|
|
|
extern void jackpot_keccak512_cpu_init(int thr_id, uint32_t threads);
|
|
extern void jackpot_keccak512_cpu_setBlock(void *pdata, size_t inlen);
|
|
extern void jackpot_keccak512_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_hash, int order);
|
|
|
|
extern void jackpot_compactTest_cpu_init(int thr_id, uint32_t threads);
|
|
extern void jackpot_compactTest_cpu_free(int thr_id);
|
|
extern void jackpot_compactTest_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable,
|
|
uint32_t *d_nonces1, uint32_t *nrm1, uint32_t *d_nonces2, uint32_t *nrm2, int order);
|
|
|
|
extern uint32_t cuda_check_hash_branch(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_inputHash, int order);
|
|
|
|
// Original jackpothash Funktion aus einem miner Quelltext
|
|
extern "C" unsigned int jackpothash(void *state, const void *input)
|
|
{
|
|
uint32_t hash[16];
|
|
unsigned int rnd;
|
|
|
|
sph_blake512_context ctx_blake;
|
|
sph_groestl512_context ctx_groestl;
|
|
sph_jh512_context ctx_jh;
|
|
sph_keccak512_context ctx_keccak;
|
|
sph_skein512_context ctx_skein;
|
|
|
|
sph_keccak512_init(&ctx_keccak);
|
|
sph_keccak512 (&ctx_keccak, input, 80);
|
|
sph_keccak512_close(&ctx_keccak, hash);
|
|
|
|
for (rnd = 0; rnd < 3; rnd++)
|
|
{
|
|
if (hash[0] & 0x01) {
|
|
sph_groestl512_init(&ctx_groestl);
|
|
sph_groestl512 (&ctx_groestl, (&hash), 64);
|
|
sph_groestl512_close(&ctx_groestl, (&hash));
|
|
}
|
|
else {
|
|
sph_skein512_init(&ctx_skein);
|
|
sph_skein512 (&ctx_skein, (&hash), 64);
|
|
sph_skein512_close(&ctx_skein, (&hash));
|
|
}
|
|
|
|
if (hash[0] & 0x01) {
|
|
sph_blake512_init(&ctx_blake);
|
|
sph_blake512 (&ctx_blake, (&hash), 64);
|
|
sph_blake512_close(&ctx_blake, (&hash));
|
|
}
|
|
else {
|
|
sph_jh512_init(&ctx_jh);
|
|
sph_jh512 (&ctx_jh, (&hash), 64);
|
|
sph_jh512_close(&ctx_jh, (&hash));
|
|
}
|
|
}
|
|
memcpy(state, hash, 32);
|
|
|
|
return rnd;
|
|
}
|
|
|
|
static bool init[MAX_GPUS] = { 0 };
|
|
|
|
extern "C" int scanhash_jackpot(int thr_id, struct work *work, uint32_t max_nonce, unsigned long *hashes_done)
|
|
{
|
|
uint32_t _ALIGN(64) endiandata[22];
|
|
uint32_t *pdata = work->data;
|
|
uint32_t *ptarget = work->target;
|
|
const uint32_t first_nonce = pdata[19];
|
|
int dev_id = device_map[thr_id];
|
|
|
|
uint32_t throughput = cuda_default_throughput(thr_id, 1U << 20);
|
|
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
|
|
|
|
if (opt_benchmark)
|
|
ptarget[7] = 0x000f;
|
|
|
|
if (!init[thr_id])
|
|
{
|
|
cudaSetDevice(dev_id);
|
|
if (opt_cudaschedule == -1 && gpu_threads == 1) {
|
|
cudaDeviceReset();
|
|
// reduce cpu usage
|
|
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
|
|
CUDA_LOG_ERROR();
|
|
}
|
|
cuda_get_arch(thr_id);
|
|
if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300) {
|
|
gpulog(LOG_ERR, thr_id, "Sorry, This algo is not supported by this GPU arch (SM 3.0 required)");
|
|
proper_exit(EXIT_CODE_CUDA_ERROR);
|
|
}
|
|
|
|
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput));
|
|
|
|
jackpot_keccak512_cpu_init(thr_id, throughput);
|
|
jackpot_compactTest_cpu_init(thr_id, throughput);
|
|
quark_blake512_cpu_init(thr_id, throughput);
|
|
quark_groestl512_cpu_init(thr_id, throughput);
|
|
quark_jh512_cpu_init(thr_id, throughput);
|
|
quark_skein512_cpu_init(thr_id, throughput);
|
|
|
|
cuda_check_cpu_init(thr_id, throughput);
|
|
|
|
cudaMalloc(&d_branch1Nonces[thr_id], (size_t) sizeof(uint32_t)*throughput*2);
|
|
cudaMalloc(&d_branch2Nonces[thr_id], (size_t) sizeof(uint32_t)*throughput*2);
|
|
cudaMalloc(&d_branch3Nonces[thr_id], (size_t) sizeof(uint32_t)*throughput*2);
|
|
|
|
CUDA_SAFE_CALL(cudaMalloc(&d_jackpotNonces[thr_id], (size_t) sizeof(uint32_t)*throughput*2));
|
|
|
|
init[thr_id] = true;
|
|
}
|
|
|
|
for (int k=0; k < 22; k++)
|
|
be32enc(&endiandata[k], pdata[k]);
|
|
|
|
jackpot_keccak512_cpu_setBlock((void*)endiandata, 80);
|
|
cuda_check_cpu_setTarget(ptarget);
|
|
|
|
do {
|
|
int order = 0;
|
|
|
|
// erstes Keccak512 Hash mit CUDA
|
|
jackpot_keccak512_cpu_hash(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
|
|
|
|
uint32_t nrm1, nrm2, nrm3;
|
|
|
|
// Runde 1 (ohne Gröstl)
|
|
|
|
jackpot_compactTest_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id], NULL,
|
|
d_branch1Nonces[thr_id], &nrm1,
|
|
d_branch3Nonces[thr_id], &nrm3,
|
|
order++);
|
|
|
|
// verfolge den skein-pfad weiter
|
|
quark_skein512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
|
|
|
|
// noch schnell Blake & JH
|
|
jackpot_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id],
|
|
d_branch1Nonces[thr_id], &nrm1,
|
|
d_branch2Nonces[thr_id], &nrm2,
|
|
order++);
|
|
|
|
if (nrm1+nrm2 == nrm3) {
|
|
quark_blake512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++);
|
|
quark_jh512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++);
|
|
}
|
|
|
|
// Runde 3 (komplett)
|
|
|
|
// jackpotNonces in branch1/2 aufsplitten gemäss if (hash[0] & 0x01)
|
|
jackpot_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id],
|
|
d_branch1Nonces[thr_id], &nrm1,
|
|
d_branch2Nonces[thr_id], &nrm2,
|
|
order++);
|
|
|
|
if (nrm1+nrm2 == nrm3) {
|
|
quark_groestl512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++);
|
|
quark_skein512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++);
|
|
}
|
|
|
|
// jackpotNonces in branch1/2 aufsplitten gemäss if (hash[0] & 0x01)
|
|
jackpot_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id],
|
|
d_branch1Nonces[thr_id], &nrm1,
|
|
d_branch2Nonces[thr_id], &nrm2,
|
|
order++);
|
|
|
|
if (nrm1+nrm2 == nrm3) {
|
|
quark_blake512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++);
|
|
quark_jh512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++);
|
|
}
|
|
|
|
// Runde 3 (komplett)
|
|
|
|
// jackpotNonces in branch1/2 aufsplitten gemäss if (hash[0] & 0x01)
|
|
jackpot_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id],
|
|
d_branch1Nonces[thr_id], &nrm1,
|
|
d_branch2Nonces[thr_id], &nrm2,
|
|
order++);
|
|
|
|
if (nrm1+nrm2 == nrm3) {
|
|
quark_groestl512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++);
|
|
quark_skein512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++);
|
|
}
|
|
|
|
// jackpotNonces in branch1/2 aufsplitten gemäss if (hash[0] & 0x01)
|
|
jackpot_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id],
|
|
d_branch1Nonces[thr_id], &nrm1,
|
|
d_branch2Nonces[thr_id], &nrm2,
|
|
order++);
|
|
|
|
if (nrm1+nrm2 == nrm3) {
|
|
quark_blake512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++);
|
|
quark_jh512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++);
|
|
}
|
|
|
|
*hashes_done = pdata[19] - first_nonce + throughput;
|
|
|
|
CUDA_LOG_ERROR();
|
|
|
|
uint32_t foundNonce = cuda_check_hash_branch(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
|
|
|
|
if (foundNonce != UINT32_MAX)
|
|
{
|
|
uint32_t vhash64[8];
|
|
be32enc(&endiandata[19], foundNonce);
|
|
|
|
// jackpothash function gibt die Zahl der Runden zurück
|
|
jackpothash(vhash64, endiandata);
|
|
|
|
if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) {
|
|
int res = 1;
|
|
work_set_target_ratio(work, vhash64);
|
|
#if 0
|
|
uint32_t secNonce = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], 1);
|
|
if (secNonce != 0) {
|
|
be32enc(&endiandata[19], secNonce);
|
|
nist5hash(vhash64, endiandata);
|
|
if (bn_hash_target_ratio(vhash64, ptarget) > work->shareratio)
|
|
work_set_target_ratio(work, vhash64);
|
|
pdata[21] = secNonce;
|
|
res++;
|
|
}
|
|
#endif
|
|
pdata[19] = foundNonce;
|
|
return res;
|
|
} else {
|
|
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNonce);
|
|
}
|
|
}
|
|
|
|
if ((uint64_t) throughput + pdata[19] >= max_nonce) {
|
|
pdata[19] = max_nonce;
|
|
break;
|
|
}
|
|
|
|
pdata[19] += throughput;
|
|
|
|
} while (!work_restart[thr_id].restart);
|
|
|
|
*hashes_done = pdata[19] - first_nonce;
|
|
|
|
CUDA_LOG_ERROR();
|
|
|
|
return 0;
|
|
}
|
|
|
|
// cleanup
|
|
extern "C" void free_jackpot(int thr_id)
|
|
{
|
|
if (!init[thr_id])
|
|
return;
|
|
|
|
cudaThreadSynchronize();
|
|
|
|
cudaFree(d_branch1Nonces[thr_id]);
|
|
cudaFree(d_branch2Nonces[thr_id]);
|
|
cudaFree(d_branch3Nonces[thr_id]);
|
|
cudaFree(d_jackpotNonces[thr_id]);
|
|
|
|
quark_blake512_cpu_free(thr_id);
|
|
quark_groestl512_cpu_free(thr_id);
|
|
jackpot_compactTest_cpu_free(thr_id);
|
|
|
|
cudaFree(d_hash[thr_id]);
|
|
|
|
cuda_check_cpu_free(thr_id);
|
|
CUDA_LOG_ERROR();
|
|
|
|
cudaDeviceSynchronize();
|
|
|
|
init[thr_id] = false;
|
|
}
|