mirror of https://github.com/GOSTSec/ccminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
372 lines
10 KiB
372 lines
10 KiB
/** |
|
* Blake-256 Cuda Kernel (Tested on SM 5.0) |
|
* |
|
* Tanguy Pruvot - Aug. 2014 |
|
*/ |
|
|
|
#include "miner.h" |
|
|
|
extern "C" { |
|
#include "sph/sph_blake.h" |
|
#include <stdint.h> |
|
#include <memory.h> |
|
} |
|
|
|
/* threads per block */ |
|
#define TPB 128 |
|
|
|
extern "C" int blake256_rounds = 14; |
|
|
|
/* hash by cpu with blake 256 */ |
|
extern "C" void blake256hash(void *output, const void *input, int rounds = 14) |
|
{ |
|
unsigned char hash[64]; |
|
sph_blake256_context ctx; |
|
|
|
/* in sph_blake.c */ |
|
blake256_rounds = rounds; |
|
|
|
sph_blake256_init(&ctx); |
|
sph_blake256(&ctx, input, 80); |
|
sph_blake256_close(&ctx, hash); |
|
memcpy(output, hash, 32); |
|
} |
|
|
|
#include "cuda_helper.h" |
|
|
|
#define MAXU 0xffffffffU |
|
|
|
// in cpu-miner.c |
|
extern bool opt_n_threads; |
|
extern bool opt_benchmark; |
|
extern int device_map[8]; |
|
|
|
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); |
|
|
|
__constant__ |
|
static uint32_t __align__(32) c_Target[8]; |
|
|
|
__constant__ |
|
static uint32_t __align__(32) c_data[20]; |
|
|
|
static uint32_t *d_resNounce[8]; |
|
static uint32_t *h_resNounce[8]; |
|
|
|
static uint32_t extra_results[2] = { MAXU, MAXU }; |
|
|
|
/* prefer uint32_t to prevent size conversions = speed +5/10 % */ |
|
__constant__ |
|
static uint32_t __align__(32) c_sigma[16][16]; |
|
const uint32_t host_sigma[16][16] = { |
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
|
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, |
|
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, |
|
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, |
|
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, |
|
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, |
|
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, |
|
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, |
|
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, |
|
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, |
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
|
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, |
|
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, |
|
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, |
|
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, |
|
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } |
|
}; |
|
|
|
__device__ __constant__ |
|
static const uint32_t __align__(32) c_IV256[8] = { |
|
SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85), |
|
SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A), |
|
SPH_C32(0x510E527F), SPH_C32(0x9B05688C), |
|
SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19) |
|
}; |
|
|
|
__device__ __constant__ |
|
static const uint32_t __align__(32) c_u256[16] = { |
|
SPH_C32(0x243F6A88), SPH_C32(0x85A308D3), |
|
SPH_C32(0x13198A2E), SPH_C32(0x03707344), |
|
SPH_C32(0xA4093822), SPH_C32(0x299F31D0), |
|
SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89), |
|
SPH_C32(0x452821E6), SPH_C32(0x38D01377), |
|
SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C), |
|
SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD), |
|
SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917) |
|
}; |
|
|
|
#if 0 |
|
#define GS(m0, m1, c0, c1, a, b, c, d) do { \ |
|
a = SPH_T32(a + b + (m0 ^ c1)); \ |
|
d = SPH_ROTR32(d ^ a, 16); \ |
|
c = SPH_T32(c + d); \ |
|
b = SPH_ROTR32(b ^ c, 12); \ |
|
a = SPH_T32(a + b + (m1 ^ c0)); \ |
|
d = SPH_ROTR32(d ^ a, 8); \ |
|
c = SPH_T32(c + d); \ |
|
b = SPH_ROTR32(b ^ c, 7); \ |
|
} while (0) |
|
|
|
#define ROUND_S(r) do { \ |
|
GS(Mx(r, 0x0), Mx(r, 0x1), CSx(r, 0x0), CSx(r, 0x1), v[0], v[4], v[0x8], v[0xC]); \ |
|
GS(Mx(r, 0x2), Mx(r, 0x3), CSx(r, 0x2), CSx(r, 0x3), v[1], v[5], v[0x9], v[0xD]); \ |
|
GS(Mx(r, 0x4), Mx(r, 0x5), CSx(r, 0x4), CSx(r, 0x5), v[2], v[6], v[0xA], v[0xE]); \ |
|
GS(Mx(r, 0x6), Mx(r, 0x7), CSx(r, 0x6), CSx(r, 0x7), v[3], v[7], v[0xB], v[0xF]); \ |
|
GS(Mx(r, 0x8), Mx(r, 0x9), CSx(r, 0x8), CSx(r, 0x9), v[0], v[5], v[0xA], v[0xF]); \ |
|
GS(Mx(r, 0xA), Mx(r, 0xB), CSx(r, 0xA), CSx(r, 0xB), v[1], v[6], v[0xB], v[0xC]); \ |
|
GS(Mx(r, 0xC), Mx(r, 0xD), CSx(r, 0xC), CSx(r, 0xD), v[2], v[7], v[0x8], v[0xD]); \ |
|
GS(Mx(r, 0xE), Mx(r, 0xF), CSx(r, 0xE), CSx(r, 0xF), v[3], v[4], v[0x9], v[0xE]); \ |
|
} while (0) |
|
#endif |
|
|
|
#define GS(a,b,c,d,x) { \ |
|
const uint32_t idx1 = c_sigma[i][x]; \ |
|
const uint32_t idx2 = c_sigma[i][x+1]; \ |
|
v[a] += (m[idx1] ^ c_u256[idx2]) + v[b]; \ |
|
v[d] = SPH_ROTL32(v[d] ^ v[a], 16); \ |
|
v[c] += v[d]; \ |
|
v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \ |
|
\ |
|
v[a] += (m[idx2] ^ c_u256[idx1]) + v[b]; \ |
|
v[d] = SPH_ROTR32(v[d] ^ v[a], 8); \ |
|
v[c] += v[d]; \ |
|
v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \ |
|
} |
|
|
|
/* Second part (64-80) msg never change, store it */ |
|
__device__ __constant__ |
|
static const uint32_t __align__(32) c_Padding[16] = { |
|
0, 0, 0, 0, |
|
0x80000000UL, 0, 0, 0, |
|
0, 0, 0, 0, |
|
0, 1, 0, 640, |
|
}; |
|
|
|
__device__ static |
|
void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0, int blakerounds) |
|
{ |
|
uint32_t /* __align__(8) */ m[16]; |
|
uint32_t /* __align__(8) */ v[16]; |
|
|
|
m[0] = block[0]; |
|
m[1] = block[1]; |
|
m[2] = block[2]; |
|
m[3] = block[3]; |
|
|
|
for (uint32_t i = 4; i < 16; i++) { |
|
m[i] = (T0 == 0x200) ? block[i] : c_Padding[i]; |
|
} |
|
|
|
//#pragma unroll 8 |
|
for(uint32_t i = 0; i < 8; i++) |
|
v[i] = h[i]; |
|
|
|
v[ 8] = c_u256[0]; |
|
v[ 9] = c_u256[1]; |
|
v[10] = c_u256[2]; |
|
v[11] = c_u256[3]; |
|
|
|
v[12] = c_u256[4] ^ T0; |
|
v[13] = c_u256[5] ^ T0; |
|
v[14] = c_u256[6]; |
|
v[15] = c_u256[7]; |
|
|
|
for (int i = 0; i < blakerounds; i++) { |
|
/* column step */ |
|
GS(0, 4, 0x8, 0xC, 0x0); |
|
GS(1, 5, 0x9, 0xD, 0x2); |
|
GS(2, 6, 0xA, 0xE, 0x4); |
|
GS(3, 7, 0xB, 0xF, 0x6); |
|
/* diagonal step */ |
|
GS(0, 5, 0xA, 0xF, 0x8); |
|
GS(1, 6, 0xB, 0xC, 0xA); |
|
GS(2, 7, 0x8, 0xD, 0xC); |
|
GS(3, 4, 0x9, 0xE, 0xE); |
|
} |
|
|
|
//#pragma unroll 16 |
|
for (uint32_t i = 0; i < 16; i++) { |
|
uint32_t j = i % 8; |
|
h[j] ^= v[i]; |
|
} |
|
} |
|
|
|
__global__ |
|
void blake256_gpu_hash_80(uint32_t threads, uint32_t startNounce, uint32_t *resNounce, const int blakerounds) |
|
{ |
|
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
if (thread < threads) |
|
{ |
|
const uint32_t nounce = startNounce + thread; |
|
uint32_t h[8]; |
|
|
|
#pragma unroll |
|
for(int i=0; i<8; i++) |
|
h[i] = c_IV256[i]; |
|
|
|
blake256_compress(h, c_data, 512, blakerounds); |
|
|
|
// ------ Close: Bytes 64 to 80 ------ |
|
|
|
uint32_t ending[4]; |
|
ending[0] = c_data[16]; |
|
ending[1] = c_data[17]; |
|
ending[2] = c_data[18]; |
|
ending[3] = nounce; /* our tested value */ |
|
|
|
blake256_compress(h, ending, 640, blakerounds); |
|
|
|
for (int i = 7; i >= 0; i--) { |
|
uint32_t hash = cuda_swab32(h[i]); |
|
if (hash > c_Target[i]) { |
|
return; |
|
} |
|
if (hash < c_Target[i]) { |
|
break; |
|
} |
|
} |
|
|
|
/* keep the smallest nounce, + extra one if found */ |
|
if (resNounce[0] > nounce) { |
|
resNounce[1] = resNounce[0]; |
|
resNounce[0] = nounce; |
|
} |
|
else |
|
resNounce[1] = nounce; |
|
} |
|
} |
|
|
|
__host__ |
|
uint32_t blake256_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, const int blakerounds) |
|
{ |
|
const int threadsperblock = TPB; |
|
uint32_t result = MAXU; |
|
|
|
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
|
dim3 block(threadsperblock); |
|
size_t shared_size = 0; |
|
|
|
/* Check error on Ctrl+C or kill to prevent segfaults on exit */ |
|
if (cudaMemset(d_resNounce[thr_id], 0xff, 2*sizeof(uint32_t)) != cudaSuccess) |
|
return result; |
|
|
|
blake256_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNounce, d_resNounce[thr_id], blakerounds); |
|
cudaDeviceSynchronize(); |
|
if (cudaSuccess == cudaMemcpy(h_resNounce[thr_id], d_resNounce[thr_id], 2*sizeof(uint32_t), cudaMemcpyDeviceToHost)) { |
|
cudaThreadSynchronize(); |
|
result = h_resNounce[thr_id][0]; |
|
extra_results[0] = h_resNounce[thr_id][1]; |
|
} |
|
return result; |
|
} |
|
|
|
__host__ |
|
void blake256_cpu_setBlock_80(uint32_t *pdata, const uint32_t *ptarget) |
|
{ |
|
uint32_t data[20]; |
|
memcpy(data, pdata, 80); |
|
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, sizeof(data), 0, cudaMemcpyHostToDevice)); |
|
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_sigma, host_sigma, sizeof(host_sigma), 0, cudaMemcpyHostToDevice)); |
|
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_Target, ptarget, 32, 0, cudaMemcpyHostToDevice)); |
|
} |
|
|
|
extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *ptarget, |
|
uint32_t max_nonce, unsigned long *hashes_done, uint32_t blakerounds=14) |
|
{ |
|
const uint32_t first_nonce = pdata[19]; |
|
static bool init[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; |
|
uint32_t throughput = min(TPB * 4096, max_nonce - first_nonce); |
|
int rc = 0; |
|
|
|
if (extra_results[0] != MAXU) { |
|
// possible extra result found in previous call |
|
if (first_nonce <= extra_results[0] && max_nonce >= extra_results[0]) { |
|
pdata[19] = extra_results[0]; |
|
*hashes_done = pdata[19] - first_nonce + 1; |
|
extra_results[0] = MAXU; |
|
rc = 1; |
|
goto exit_scan; |
|
} |
|
} |
|
|
|
if (opt_benchmark) |
|
((uint32_t*)ptarget)[7] = 0x00000f; |
|
|
|
if (!init[thr_id]) { |
|
if (opt_n_threads > 1) { |
|
CUDA_SAFE_CALL(cudaSetDevice(device_map[thr_id])); |
|
} |
|
CUDA_SAFE_CALL(cudaMallocHost(&h_resNounce[thr_id], 2*sizeof(uint32_t))); |
|
CUDA_SAFE_CALL(cudaMalloc(&d_resNounce[thr_id], 2*sizeof(uint32_t))); |
|
init[thr_id] = true; |
|
} |
|
|
|
if (opt_debug && throughput < (TPB * 4096)) |
|
applog(LOG_DEBUG, "throughput=%u, start=%x, max=%x", throughput, first_nonce, max_nonce); |
|
|
|
blake256_cpu_setBlock_80(pdata, ptarget); |
|
|
|
do { |
|
// GPU HASH |
|
uint32_t foundNonce = blake256_cpu_hash_80(thr_id, throughput, pdata[19], blakerounds); |
|
if (foundNonce != MAXU) |
|
{ |
|
uint32_t endiandata[20]; |
|
uint32_t vhashcpu[8]; |
|
uint32_t Htarg = ptarget[7]; |
|
|
|
for (int k=0; k < 19; k++) |
|
be32enc(&endiandata[k], pdata[k]); |
|
|
|
be32enc(&endiandata[19], foundNonce); |
|
|
|
blake256hash(vhashcpu, endiandata, blakerounds); |
|
|
|
if (vhashcpu[7] <= Htarg && fulltest(vhashcpu, ptarget)) |
|
{ |
|
pdata[19] = foundNonce; |
|
rc = 1; |
|
|
|
if (extra_results[0] != MAXU) { |
|
// Rare but possible if the throughput is big |
|
be32enc(&endiandata[19], extra_results[0]); |
|
blake256hash(vhashcpu, endiandata, blakerounds); |
|
if (vhashcpu[7] <= Htarg && fulltest(vhashcpu, ptarget)) { |
|
applog(LOG_NOTICE, "GPU found more than one result yippee!"); |
|
} else { |
|
extra_results[0] = MAXU; |
|
} |
|
} |
|
|
|
goto exit_scan; |
|
} |
|
else if (vhashcpu[7] > Htarg) { |
|
applog(LOG_WARNING, "GPU #%d: result for nounce %08x is not in range: %x > %x", thr_id, foundNonce, vhashcpu[7], Htarg); |
|
} |
|
else if (vhashcpu[6] > ptarget[6]) { |
|
applog(LOG_WARNING, "GPU #%d: hash[6] for nounce %08x is not in range: %x > %x", thr_id, foundNonce, vhashcpu[6], ptarget[6]); |
|
} |
|
else { |
|
applog(LOG_WARNING, "GPU #%d: result for nounce %08x does not validate on CPU!", thr_id, foundNonce); |
|
} |
|
} |
|
|
|
pdata[19] += throughput; |
|
|
|
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart); |
|
|
|
exit_scan: |
|
*hashes_done = pdata[19] - first_nonce + 1; |
|
#if 0 |
|
/* reset the device to allow multiple instances |
|
* could be made in cpu-miner... check later if required */ |
|
if (opt_n_threads == 1) { |
|
CUDA_SAFE_CALL(cudaDeviceReset()); |
|
init[thr_id] = false; |
|
} |
|
#endif |
|
// wait proper end of all threads |
|
cudaDeviceSynchronize(); |
|
return rc; |
|
}
|
|
|