mirror of
https://github.com/GOSTSec/ccminer
synced 2025-01-12 07:48:33 +00:00
603 lines
17 KiB
C++
603 lines
17 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2012 The Bitcoin developers
|
|
// Distributed under the MIT/X11 software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
#ifndef BITCOIN_BIGNUM_H
|
|
#define BITCOIN_BIGNUM_H
|
|
|
|
#ifndef PROTOCOL_VERSION
|
|
#define PROTOCOL_VERSION 70001
|
|
#endif
|
|
|
|
#include <map>
|
|
#include <limits>
|
|
#include <algorithm>
|
|
#include <stdexcept>
|
|
#include <vector>
|
|
|
|
#include "uint256.h"
|
|
|
|
#include <openssl/bn.h>
|
|
|
|
#include "serialize.hpp"
|
|
|
|
using namespace std;
|
|
|
|
/** Errors thrown by the bignum class */
|
|
class bignum_error : public std::runtime_error
|
|
{
|
|
public:
|
|
explicit bignum_error(const std::string& str) : std::runtime_error(str) {}
|
|
};
|
|
|
|
|
|
/** RAII encapsulated BN_CTX (OpenSSL bignum context) */
|
|
class CAutoBN_CTX
|
|
{
|
|
protected:
|
|
BN_CTX* pctx;
|
|
BN_CTX* operator=(BN_CTX* pnew) { return pctx = pnew; }
|
|
|
|
public:
|
|
CAutoBN_CTX()
|
|
{
|
|
pctx = BN_CTX_new();
|
|
if (pctx == NULL)
|
|
throw bignum_error("CAutoBN_CTX : BN_CTX_new() returned NULL");
|
|
}
|
|
|
|
~CAutoBN_CTX()
|
|
{
|
|
if (pctx != NULL)
|
|
BN_CTX_free(pctx);
|
|
}
|
|
|
|
operator BN_CTX*() { return pctx; }
|
|
BN_CTX& operator*() { return *pctx; }
|
|
BN_CTX** operator&() { return &pctx; }
|
|
bool operator!() { return (pctx == NULL); }
|
|
};
|
|
|
|
|
|
/** C++ wrapper for BIGNUM (OpenSSL bignum) */
|
|
class CBigNum : public BIGNUM
|
|
{
|
|
public:
|
|
CBigNum()
|
|
{
|
|
BN_init(this);
|
|
}
|
|
|
|
CBigNum(const CBigNum& b)
|
|
{
|
|
BN_init(this);
|
|
if (!BN_copy(this, &b))
|
|
{
|
|
BN_clear_free(this);
|
|
throw bignum_error("CBigNum::CBigNum(const CBigNum&) : BN_copy failed");
|
|
}
|
|
}
|
|
|
|
CBigNum& operator=(const CBigNum& b)
|
|
{
|
|
if (!BN_copy(this, &b))
|
|
throw bignum_error("CBigNum::operator= : BN_copy failed");
|
|
return (*this);
|
|
}
|
|
|
|
~CBigNum()
|
|
{
|
|
BN_clear_free(this);
|
|
}
|
|
|
|
//CBigNum(char n) is not portable. Use 'signed char' or 'unsigned char'.
|
|
CBigNum(signed char n) { BN_init(this); if (n >= 0) setulong(n); else setint64(n); }
|
|
CBigNum(short n) { BN_init(this); if (n >= 0) setulong(n); else setint64(n); }
|
|
CBigNum(int n) { BN_init(this); if (n >= 0) setulong(n); else setint64(n); }
|
|
CBigNum(long n) { BN_init(this); if (n >= 0) setulong(n); else setint64(n); }
|
|
CBigNum(int64 n) { BN_init(this); setint64(n); }
|
|
CBigNum(unsigned char n) { BN_init(this); setulong(n); }
|
|
CBigNum(unsigned short n) { BN_init(this); setulong(n); }
|
|
CBigNum(unsigned int n) { BN_init(this); setulong(n); }
|
|
CBigNum(unsigned long n) { BN_init(this); setulong(n); }
|
|
CBigNum(uint64 n) { BN_init(this); setuint64(n); }
|
|
explicit CBigNum(uint256 n) { BN_init(this); setuint256(n); }
|
|
|
|
explicit CBigNum(const std::vector<unsigned char>& vch)
|
|
{
|
|
BN_init(this);
|
|
setvch(vch);
|
|
}
|
|
|
|
void setulong(unsigned long n)
|
|
{
|
|
if (!BN_set_word(this, n))
|
|
throw bignum_error("CBigNum conversion from unsigned long : BN_set_word failed");
|
|
}
|
|
|
|
unsigned long getulong() const
|
|
{
|
|
return (unsigned long) BN_get_word(this);
|
|
}
|
|
|
|
unsigned int getuint() const
|
|
{
|
|
return (unsigned int) BN_get_word(this);
|
|
}
|
|
|
|
int getint() const
|
|
{
|
|
unsigned long n = (unsigned long) BN_get_word(this);
|
|
if (!BN_is_negative(this))
|
|
return (n > (unsigned long)std::numeric_limits<int>::max() ? std::numeric_limits<int>::max() : n);
|
|
else
|
|
return (n > (unsigned long)std::numeric_limits<int>::max() ? std::numeric_limits<int>::min() : -(int)n);
|
|
}
|
|
|
|
void setint64(int64 sn)
|
|
{
|
|
unsigned char pch[sizeof(sn) + 6];
|
|
unsigned char* p = pch + 4;
|
|
bool fNegative;
|
|
uint64 n;
|
|
|
|
if (sn < 0LL)
|
|
{
|
|
// Since the minimum signed integer cannot be represented as positive so long as its type is signed,
|
|
// and it's not well-defined what happens if you make it unsigned before negating it,
|
|
// we instead increment the negative integer by 1, convert it, then increment the (now positive) unsigned integer by 1 to compensate
|
|
n = -(sn + 1);
|
|
++n;
|
|
fNegative = true;
|
|
} else {
|
|
n = sn;
|
|
fNegative = false;
|
|
}
|
|
|
|
bool fLeadingZeroes = true;
|
|
for (int i = 0; i < 8; i++)
|
|
{
|
|
unsigned char c = (n >> 56) & 0xff;
|
|
n <<= 8;
|
|
if (fLeadingZeroes)
|
|
{
|
|
if (c == 0)
|
|
continue;
|
|
if (c & 0x80)
|
|
*p++ = (fNegative ? 0x80 : 0);
|
|
else if (fNegative)
|
|
c |= 0x80;
|
|
fLeadingZeroes = false;
|
|
}
|
|
*p++ = c;
|
|
}
|
|
unsigned int nSize = (unsigned int) (p - (pch + 4));
|
|
pch[0] = (nSize >> 24) & 0xff;
|
|
pch[1] = (nSize >> 16) & 0xff;
|
|
pch[2] = (nSize >> 8) & 0xff;
|
|
pch[3] = (nSize) & 0xff;
|
|
BN_mpi2bn(pch, (int) (p - pch), this);
|
|
}
|
|
|
|
void setuint64(uint64 n)
|
|
{
|
|
unsigned char pch[sizeof(n) + 6];
|
|
unsigned char* p = pch + 4;
|
|
bool fLeadingZeroes = true;
|
|
for (int i = 0; i < 8; i++)
|
|
{
|
|
unsigned char c = (n >> 56) & 0xff;
|
|
n <<= 8;
|
|
if (fLeadingZeroes)
|
|
{
|
|
if (c == 0)
|
|
continue;
|
|
if (c & 0x80)
|
|
*p++ = 0;
|
|
fLeadingZeroes = false;
|
|
}
|
|
*p++ = c;
|
|
}
|
|
unsigned int nSize = (unsigned int) (p - (pch + 4));
|
|
pch[0] = (nSize >> 24) & 0xff;
|
|
pch[1] = (nSize >> 16) & 0xff;
|
|
pch[2] = (nSize >> 8) & 0xff;
|
|
pch[3] = (nSize) & 0xff;
|
|
BN_mpi2bn(pch, (int) (p - pch), this);
|
|
}
|
|
|
|
void setuint256(uint256 n)
|
|
{
|
|
unsigned char pch[sizeof(n) + 6];
|
|
unsigned char* p = pch + 4;
|
|
bool fLeadingZeroes = true;
|
|
unsigned char* pbegin = (unsigned char*)&n;
|
|
unsigned char* psrc = pbegin + sizeof(n);
|
|
while (psrc != pbegin)
|
|
{
|
|
unsigned char c = *(--psrc);
|
|
if (fLeadingZeroes)
|
|
{
|
|
if (c == 0)
|
|
continue;
|
|
if (c & 0x80)
|
|
*p++ = 0;
|
|
fLeadingZeroes = false;
|
|
}
|
|
*p++ = c;
|
|
}
|
|
unsigned int nSize = (unsigned int) (p - (pch + 4));
|
|
pch[0] = (nSize >> 24) & 0xff;
|
|
pch[1] = (nSize >> 16) & 0xff;
|
|
pch[2] = (nSize >> 8) & 0xff;
|
|
pch[3] = (nSize >> 0) & 0xff;
|
|
BN_mpi2bn(pch, (int) (p - pch), this);
|
|
}
|
|
|
|
uint256 getuint256() const
|
|
{
|
|
unsigned int nSize = BN_bn2mpi(this, NULL);
|
|
if (nSize < 4)
|
|
return 0;
|
|
std::vector<unsigned char> vch(nSize);
|
|
BN_bn2mpi(this, &vch[0]);
|
|
if (vch.size() > 4)
|
|
vch[4] &= 0x7f;
|
|
uint256 n = 0;
|
|
for (unsigned int i = 0, j = (unsigned int) vch.size()-1; i < sizeof(n) && j >= 4; i++, j--)
|
|
((unsigned char*)&n)[i] = vch[j];
|
|
return n;
|
|
}
|
|
|
|
void setvch(const std::vector<unsigned char>& vch)
|
|
{
|
|
std::vector<unsigned char> vch2(vch.size() + 4);
|
|
unsigned int nSize = (unsigned int) vch.size();
|
|
// BIGNUM's byte stream format expects 4 bytes of
|
|
// big endian size data info at the front
|
|
vch2[0] = (nSize >> 24) & 0xff;
|
|
vch2[1] = (nSize >> 16) & 0xff;
|
|
vch2[2] = (nSize >> 8) & 0xff;
|
|
vch2[3] = (nSize >> 0) & 0xff;
|
|
// swap data to big endian
|
|
reverse_copy(vch.begin(), vch.end(), vch2.begin() + 4);
|
|
BN_mpi2bn(&vch2[0], (int) vch2.size(), this);
|
|
}
|
|
|
|
std::vector<unsigned char> getvch() const
|
|
{
|
|
unsigned int nSize = BN_bn2mpi(this, NULL);
|
|
if (nSize <= 4)
|
|
return std::vector<unsigned char>();
|
|
std::vector<unsigned char> vch(nSize);
|
|
BN_bn2mpi(this, &vch[0]);
|
|
vch.erase(vch.begin(), vch.begin() + 4);
|
|
reverse(vch.begin(), vch.end());
|
|
return vch;
|
|
}
|
|
|
|
// The "compact" format is a representation of a whole
|
|
// number N using an unsigned 32bit number similar to a
|
|
// floating point format.
|
|
// The most significant 8 bits are the unsigned exponent of base 256.
|
|
// This exponent can be thought of as "number of bytes of N".
|
|
// The lower 23 bits are the mantissa.
|
|
// Bit number 24 (0x800000) represents the sign of N.
|
|
// N = (-1^sign) * mantissa * 256^(exponent-3)
|
|
//
|
|
// Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn().
|
|
// MPI uses the most significant bit of the first byte as sign.
|
|
// Thus 0x1234560000 is compact (0x05123456)
|
|
// and 0xc0de000000 is compact (0x0600c0de)
|
|
// (0x05c0de00) would be -0x40de000000
|
|
//
|
|
// Bitcoin only uses this "compact" format for encoding difficulty
|
|
// targets, which are unsigned 256bit quantities. Thus, all the
|
|
// complexities of the sign bit and using base 256 are probably an
|
|
// implementation accident.
|
|
//
|
|
// This implementation directly uses shifts instead of going
|
|
// through an intermediate MPI representation.
|
|
CBigNum& SetCompact(unsigned int nCompact)
|
|
{
|
|
unsigned int nSize = nCompact >> 24;
|
|
bool fNegative =(nCompact & 0x00800000) != 0;
|
|
unsigned int nWord = nCompact & 0x007fffff;
|
|
if (nSize <= 3)
|
|
{
|
|
nWord >>= 8*(3-nSize);
|
|
BN_set_word(this, nWord);
|
|
}
|
|
else
|
|
{
|
|
BN_set_word(this, nWord);
|
|
BN_lshift(this, this, 8*(nSize-3));
|
|
}
|
|
BN_set_negative(this, fNegative);
|
|
return *this;
|
|
}
|
|
|
|
unsigned int GetCompact() const
|
|
{
|
|
unsigned int nSize = BN_num_bytes(this);
|
|
unsigned int nCompact = 0;
|
|
if (nSize <= 3)
|
|
nCompact = (unsigned int) BN_get_word(this) << 8*(3-nSize);
|
|
else
|
|
{
|
|
CBigNum bn;
|
|
BN_rshift(&bn, this, 8*(nSize-3));
|
|
nCompact = (unsigned int) BN_get_word(&bn);
|
|
}
|
|
// The 0x00800000 bit denotes the sign.
|
|
// Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
|
|
if (nCompact & 0x00800000)
|
|
{
|
|
nCompact >>= 8;
|
|
nSize++;
|
|
}
|
|
nCompact |= nSize << 24;
|
|
nCompact |= (BN_is_negative(this) ? 0x00800000 : 0);
|
|
return nCompact;
|
|
}
|
|
|
|
void SetHex(const std::string& str)
|
|
{
|
|
// skip 0x
|
|
const char* psz = str.c_str();
|
|
while (isspace(*psz))
|
|
psz++;
|
|
bool fNegative = false;
|
|
if (*psz == '-')
|
|
{
|
|
fNegative = true;
|
|
psz++;
|
|
}
|
|
if (psz[0] == '0' && tolower(psz[1]) == 'x')
|
|
psz += 2;
|
|
while (isspace(*psz))
|
|
psz++;
|
|
|
|
// hex string to bignum
|
|
static const signed char phexdigit[256] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,1,2,3,4,5,6,7,8,9,0,0,0,0,0,0, 0,0xa,0xb,0xc,0xd,0xe,0xf,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0xa,0xb,0xc,0xd,0xe,0xf,0,0,0,0,0,0,0,0,0 };
|
|
*this = 0;
|
|
while (isxdigit(*psz))
|
|
{
|
|
*this <<= 4;
|
|
int n = phexdigit[(unsigned char)*psz++];
|
|
*this += n;
|
|
}
|
|
if (fNegative)
|
|
*this = 0 - *this;
|
|
}
|
|
|
|
std::string ToString(int nBase=10) const
|
|
{
|
|
CAutoBN_CTX pctx;
|
|
CBigNum bnBase = nBase;
|
|
CBigNum bn0 = 0;
|
|
std::string str;
|
|
CBigNum bn = *this;
|
|
BN_set_negative(&bn, false);
|
|
CBigNum dv;
|
|
CBigNum rem;
|
|
if (BN_cmp(&bn, &bn0) == 0)
|
|
return "0";
|
|
while (BN_cmp(&bn, &bn0) > 0)
|
|
{
|
|
if (!BN_div(&dv, &rem, &bn, &bnBase, pctx))
|
|
throw bignum_error("CBigNum::ToString() : BN_div failed");
|
|
bn = dv;
|
|
unsigned int c = rem.getulong();
|
|
str += "0123456789abcdef"[c];
|
|
}
|
|
if (BN_is_negative(this))
|
|
str += "-";
|
|
reverse(str.begin(), str.end());
|
|
return str;
|
|
}
|
|
|
|
std::string GetHex() const
|
|
{
|
|
return ToString(16);
|
|
}
|
|
|
|
unsigned int GetSerializeSize(int nType=0, int nVersion=PROTOCOL_VERSION) const
|
|
{
|
|
return ::GetSerializeSize(getvch(), nType, nVersion);
|
|
}
|
|
|
|
template<typename Stream>
|
|
void Serialize(Stream& s, int nType=0, int nVersion=PROTOCOL_VERSION) const
|
|
{
|
|
::Serialize(s, getvch(), nType, nVersion);
|
|
}
|
|
|
|
template<typename Stream>
|
|
void Unserialize(Stream& s, int nType=0, int nVersion=PROTOCOL_VERSION)
|
|
{
|
|
std::vector<unsigned char> vch;
|
|
::Unserialize(s, vch, nType, nVersion);
|
|
setvch(vch);
|
|
}
|
|
|
|
|
|
bool operator!() const
|
|
{
|
|
return BN_is_zero(this);
|
|
}
|
|
|
|
CBigNum& operator+=(const CBigNum& b)
|
|
{
|
|
if (!BN_add(this, this, &b))
|
|
throw bignum_error("CBigNum::operator+= : BN_add failed");
|
|
return *this;
|
|
}
|
|
|
|
CBigNum& operator-=(const CBigNum& b)
|
|
{
|
|
*this = *this - b;
|
|
return *this;
|
|
}
|
|
|
|
CBigNum& operator*=(const CBigNum& b)
|
|
{
|
|
CAutoBN_CTX pctx;
|
|
if (!BN_mul(this, this, &b, pctx))
|
|
throw bignum_error("CBigNum::operator*= : BN_mul failed");
|
|
return *this;
|
|
}
|
|
|
|
CBigNum& operator/=(const CBigNum& b)
|
|
{
|
|
*this = *this / b;
|
|
return *this;
|
|
}
|
|
|
|
CBigNum& operator%=(const CBigNum& b)
|
|
{
|
|
*this = *this % b;
|
|
return *this;
|
|
}
|
|
|
|
CBigNum& operator<<=(unsigned int shift)
|
|
{
|
|
if (!BN_lshift(this, this, shift))
|
|
throw bignum_error("CBigNum:operator<<= : BN_lshift failed");
|
|
return *this;
|
|
}
|
|
|
|
CBigNum& operator>>=(unsigned int shift)
|
|
{
|
|
// Note: BN_rshift segfaults on 64-bit if 2^shift is greater than the number
|
|
// if built on ubuntu 9.04 or 9.10, probably depends on version of OpenSSL
|
|
CBigNum a = 1;
|
|
a <<= shift;
|
|
if (BN_cmp(&a, this) > 0)
|
|
{
|
|
*this = 0;
|
|
return *this;
|
|
}
|
|
|
|
if (!BN_rshift(this, this, shift))
|
|
throw bignum_error("CBigNum:operator>>= : BN_rshift failed");
|
|
return *this;
|
|
}
|
|
|
|
|
|
CBigNum& operator++()
|
|
{
|
|
// prefix operator
|
|
if (!BN_add(this, this, BN_value_one()))
|
|
throw bignum_error("CBigNum::operator++ : BN_add failed");
|
|
return *this;
|
|
}
|
|
|
|
const CBigNum operator++(int)
|
|
{
|
|
// postfix operator
|
|
const CBigNum ret = *this;
|
|
++(*this);
|
|
return ret;
|
|
}
|
|
|
|
CBigNum& operator--()
|
|
{
|
|
// prefix operator
|
|
CBigNum r;
|
|
if (!BN_sub(&r, this, BN_value_one()))
|
|
throw bignum_error("CBigNum::operator-- : BN_sub failed");
|
|
*this = r;
|
|
return *this;
|
|
}
|
|
|
|
const CBigNum operator--(int)
|
|
{
|
|
// postfix operator
|
|
const CBigNum ret = *this;
|
|
--(*this);
|
|
return ret;
|
|
}
|
|
|
|
|
|
friend inline const CBigNum operator-(const CBigNum& a, const CBigNum& b);
|
|
friend inline const CBigNum operator/(const CBigNum& a, const CBigNum& b);
|
|
friend inline const CBigNum operator%(const CBigNum& a, const CBigNum& b);
|
|
};
|
|
|
|
|
|
|
|
inline const CBigNum operator+(const CBigNum& a, const CBigNum& b)
|
|
{
|
|
CBigNum r;
|
|
if (!BN_add(&r, &a, &b))
|
|
throw bignum_error("CBigNum::operator+ : BN_add failed");
|
|
return r;
|
|
}
|
|
|
|
inline const CBigNum operator-(const CBigNum& a, const CBigNum& b)
|
|
{
|
|
CBigNum r;
|
|
if (!BN_sub(&r, &a, &b))
|
|
throw bignum_error("CBigNum::operator- : BN_sub failed");
|
|
return r;
|
|
}
|
|
|
|
inline const CBigNum operator-(const CBigNum& a)
|
|
{
|
|
CBigNum r(a);
|
|
BN_set_negative(&r, !BN_is_negative(&r));
|
|
return r;
|
|
}
|
|
|
|
inline const CBigNum operator*(const CBigNum& a, const CBigNum& b)
|
|
{
|
|
CAutoBN_CTX pctx;
|
|
CBigNum r;
|
|
if (!BN_mul(&r, &a, &b, pctx))
|
|
throw bignum_error("CBigNum::operator* : BN_mul failed");
|
|
return r;
|
|
}
|
|
|
|
inline const CBigNum operator/(const CBigNum& a, const CBigNum& b)
|
|
{
|
|
CAutoBN_CTX pctx;
|
|
CBigNum r;
|
|
if (!BN_div(&r, NULL, &a, &b, pctx))
|
|
throw bignum_error("CBigNum::operator/ : BN_div failed");
|
|
return r;
|
|
}
|
|
|
|
inline const CBigNum operator%(const CBigNum& a, const CBigNum& b)
|
|
{
|
|
CAutoBN_CTX pctx;
|
|
CBigNum r;
|
|
if (!BN_mod(&r, &a, &b, pctx))
|
|
throw bignum_error("CBigNum::operator% : BN_div failed");
|
|
return r;
|
|
}
|
|
|
|
inline const CBigNum operator<<(const CBigNum& a, unsigned int shift)
|
|
{
|
|
CBigNum r;
|
|
if (!BN_lshift(&r, &a, shift))
|
|
throw bignum_error("CBigNum:operator<< : BN_lshift failed");
|
|
return r;
|
|
}
|
|
|
|
inline const CBigNum operator>>(const CBigNum& a, unsigned int shift)
|
|
{
|
|
CBigNum r = a;
|
|
r >>= shift;
|
|
return r;
|
|
}
|
|
|
|
inline bool operator==(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) == 0); }
|
|
inline bool operator!=(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) != 0); }
|
|
inline bool operator<=(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) <= 0); }
|
|
inline bool operator>=(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) >= 0); }
|
|
inline bool operator<(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) < 0); }
|
|
inline bool operator>(const CBigNum& a, const CBigNum& b) { return (BN_cmp(&a, &b) > 0); }
|
|
|
|
#endif
|