mirror of https://github.com/GOSTSec/ccminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
275 lines
8.3 KiB
275 lines
8.3 KiB
#include <stdio.h> |
|
#include <memory.h> |
|
|
|
#include "cuda_helper.h" |
|
|
|
// globaler Speicher für alle HeftyHashes aller Threads |
|
extern uint32_t *heavy_heftyHashes[8]; |
|
extern uint32_t *heavy_nonceVector[8]; |
|
|
|
// globaler Speicher für unsere Ergebnisse |
|
uint32_t *d_hash2output[8]; |
|
|
|
|
|
/* Hash-Tabellen */ |
|
__constant__ uint32_t sha256_gpu_constantTable[64]; |
|
|
|
// muss expandiert werden |
|
__constant__ uint32_t sha256_gpu_blockHeader[16]; // 2x512 Bit Message |
|
__constant__ uint32_t sha256_gpu_register[8]; |
|
|
|
uint32_t sha256_cpu_hashTable[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; |
|
uint32_t sha256_cpu_constantTable[] = { |
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, |
|
}; |
|
|
|
#define S(x, n) (((x) >> (n)) | ((x) << (32 - (n)))) |
|
#define R(x, n) ((x) >> (n)) |
|
#define Ch(x, y, z) ((x & (y ^ z)) ^ z) |
|
#define Maj(x, y, z) ((x & (y | z)) | (y & z)) |
|
#define S0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) |
|
#define S1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) |
|
#define s0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) |
|
#define s1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) |
|
|
|
#define SWAB32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) ) |
|
|
|
// Die Hash-Funktion |
|
template <int BLOCKSIZE> __global__ void sha256_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *heftyHashes, uint32_t *nonceVector) |
|
{ |
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
if (thread < threads) |
|
{ |
|
// bestimme den aktuellen Zähler |
|
uint32_t nounce = startNounce + thread; |
|
nonceVector[thread] = nounce; |
|
|
|
// jeder thread in diesem Block bekommt sein eigenes W Array im Shared memory |
|
uint32_t W1[16]; |
|
uint32_t W2[16]; |
|
|
|
// Initialisiere die register a bis h mit der Hash-Tabelle |
|
uint32_t regs[8]; |
|
uint32_t hash[8]; |
|
|
|
// pre |
|
#pragma unroll 8 |
|
for (int k=0; k < 8; k++) |
|
{ |
|
regs[k] = sha256_gpu_register[k]; |
|
hash[k] = regs[k]; |
|
} |
|
|
|
// 2. Runde |
|
//memcpy(W, &sha256_gpu_blockHeader[0], sizeof(uint32_t) * 16); // TODO: aufsplitten in zwei Teilblöcke |
|
//memcpy(&W[5], &heftyHashes[8 * (blockDim.x * blockIdx.x + threadIdx.x)], sizeof(uint32_t) * 8); // den richtigen Hefty1 Hash holen |
|
#pragma unroll 16 |
|
for(int k=0;k<16;k++) |
|
W1[k] = sha256_gpu_blockHeader[k]; |
|
|
|
uint32_t offset = 8 * (blockDim.x * blockIdx.x + threadIdx.x); |
|
#pragma unroll 8 |
|
for(int k=0;k<8;k++) |
|
W1[((BLOCKSIZE-64)/4)+k] = heftyHashes[offset + k]; |
|
|
|
#pragma unroll 8 |
|
for (int i=((BLOCKSIZE-64)/4); i < ((BLOCKSIZE-64)/4)+8; ++i) W1[i] = SWAB32(W1[i]); // die Hefty1 Hashes brauchen eine Drehung ;) |
|
W1[3] = SWAB32(nounce); |
|
|
|
// Progress W1 |
|
#pragma unroll 16 |
|
for(int j=0;j<16;j++) |
|
{ |
|
uint32_t T1, T2; |
|
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_gpu_constantTable[j] + W1[j]; |
|
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); |
|
|
|
#pragma unroll 7 |
|
for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; |
|
regs[0] = T1 + T2; |
|
regs[4] += T1; |
|
} |
|
|
|
// Progress W2...W3 |
|
#pragma unroll 3 |
|
for(int k=0;k<3;k++) |
|
{ |
|
#pragma unroll 2 |
|
for(int j=0;j<2;j++) |
|
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; |
|
#pragma unroll 5 |
|
for(int j=2;j<7;j++) |
|
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; |
|
|
|
#pragma unroll 8 |
|
for(int j=7;j<15;j++) |
|
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; |
|
|
|
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; |
|
|
|
// Rundenfunktion |
|
#pragma unroll 16 |
|
for(int j=0;j<16;j++) |
|
{ |
|
uint32_t T1, T2; |
|
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_gpu_constantTable[j + 16 * (k+1)] + W2[j]; |
|
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); |
|
|
|
#pragma unroll 7 |
|
for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; |
|
regs[0] = T1 + T2; |
|
regs[4] += T1; |
|
} |
|
|
|
#pragma unroll 16 |
|
for(int j=0;j<16;j++) |
|
W1[j] = W2[j]; |
|
} |
|
|
|
/* |
|
for(int j=16;j<64;j++) |
|
W[j] = s1(W[j-2]) + W[j-7] + s0(W[j-15]) + W[j-16]; |
|
|
|
#pragma unroll 64 |
|
for(int j=0;j<64;j++) |
|
{ |
|
uint32_t T1, T2; |
|
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_gpu_constantTable[j] + W[j]; |
|
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); |
|
|
|
#pragma unroll 7 |
|
for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; |
|
regs[0] = T1 + T2; |
|
regs[4] += T1; |
|
} |
|
*/ |
|
#pragma unroll 8 |
|
for(int k=0;k<8;k++) |
|
hash[k] += regs[k]; |
|
|
|
#pragma unroll 8 |
|
for(int k=0;k<8;k++) |
|
((uint32_t*)outputHash)[8*thread+k] = SWAB32(hash[k]); |
|
} |
|
} |
|
|
|
// Setup-Funktionen |
|
__host__ void sha256_cpu_init(int thr_id, int threads) |
|
{ |
|
// Kopiere die Hash-Tabellen in den GPU-Speicher |
|
cudaMemcpyToSymbol( sha256_gpu_constantTable, |
|
sha256_cpu_constantTable, |
|
sizeof(uint32_t) * 64 ); |
|
|
|
// Speicher für alle Ergebnisse belegen |
|
cudaMalloc(&d_hash2output[thr_id], 8 * sizeof(uint32_t) * threads); |
|
} |
|
|
|
static int BLOCKSIZE = 84; |
|
|
|
__host__ void sha256_cpu_setBlock(void *data, int len) |
|
// data muss 80/84-Byte haben! |
|
// heftyHash hat 32-Byte |
|
{ |
|
// Nachricht expandieren und setzen |
|
uint32_t msgBlock[32]; |
|
|
|
memset(msgBlock, 0, sizeof(uint32_t) * 32); |
|
memcpy(&msgBlock[0], data, len); |
|
if (len == 84) { |
|
memset(&msgBlock[21], 0, 32); // vorläufig Nullen anstatt der Hefty1 Hashes einfüllen |
|
msgBlock[29] |= 0x80; |
|
msgBlock[31] = 928; // bitlen |
|
} else if (len == 80) { |
|
memset(&msgBlock[20], 0, 32); // vorläufig Nullen anstatt der Hefty1 Hashes einfüllen |
|
msgBlock[28] |= 0x80; |
|
msgBlock[31] = 896; // bitlen |
|
} |
|
|
|
for(int i=0;i<31;i++) // Byteorder drehen |
|
msgBlock[i] = SWAB32(msgBlock[i]); |
|
|
|
// die erste Runde wird auf der CPU durchgeführt, da diese für |
|
// alle Threads gleich ist. Der Hash wird dann an die Threads |
|
// übergeben |
|
uint32_t W[64]; |
|
|
|
// Erstelle expandierten Block W |
|
memcpy(W, &msgBlock[0], sizeof(uint32_t) * 16); |
|
for(int j=16;j<64;j++) |
|
W[j] = s1(W[j-2]) + W[j-7] + s0(W[j-15]) + W[j-16]; |
|
|
|
// Initialisiere die register a bis h mit der Hash-Tabelle |
|
uint32_t regs[8]; |
|
uint32_t hash[8]; |
|
|
|
// pre |
|
for (int k=0; k < 8; k++) |
|
{ |
|
regs[k] = sha256_cpu_hashTable[k]; |
|
hash[k] = regs[k]; |
|
} |
|
|
|
// 1. Runde |
|
for(int j=0;j<64;j++) |
|
{ |
|
uint32_t T1, T2; |
|
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_cpu_constantTable[j] + W[j]; |
|
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); |
|
|
|
//#pragma unroll 7 |
|
for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; |
|
// sollte mal noch durch memmov ersetzt werden! |
|
// memcpy(®s[1], ®s[0], sizeof(uint32_t) * 7); |
|
regs[0] = T1 + T2; |
|
regs[4] += T1; |
|
} |
|
|
|
for(int k=0;k<8;k++) |
|
hash[k] += regs[k]; |
|
|
|
// hash speichern |
|
cudaMemcpyToSymbol( sha256_gpu_register, |
|
hash, |
|
sizeof(uint32_t) * 8 ); |
|
|
|
// Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch) |
|
cudaMemcpyToSymbol( sha256_gpu_blockHeader, |
|
&msgBlock[16], |
|
64); |
|
|
|
BLOCKSIZE = len; |
|
} |
|
|
|
__host__ void sha256_cpu_copyHeftyHash(int thr_id, int threads, void *heftyHashes, int copy) |
|
{ |
|
// Hefty1 Hashes kopieren |
|
if (copy) |
|
CUDA_SAFE_CALL(cudaMemcpy(heavy_heftyHashes[thr_id], heftyHashes, 8 * sizeof(uint32_t) * threads, cudaMemcpyHostToDevice)); |
|
//else cudaThreadSynchronize(); |
|
} |
|
|
|
__host__ void sha256_cpu_hash(int thr_id, int threads, int startNounce) |
|
{ |
|
const int threadsperblock = 256; |
|
|
|
// berechne wie viele Thread Blocks wir brauchen |
|
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
|
dim3 block(threadsperblock); |
|
|
|
// Größe des dynamischen Shared Memory Bereichs |
|
size_t shared_size = 0; |
|
|
|
if (BLOCKSIZE == 84) |
|
sha256_gpu_hash<84><<<grid, block, shared_size>>>(threads, startNounce, d_hash2output[thr_id], heavy_heftyHashes[thr_id], heavy_nonceVector[thr_id]); |
|
else if (BLOCKSIZE == 80) { |
|
sha256_gpu_hash<80><<<grid, block, shared_size>>>(threads, startNounce, d_hash2output[thr_id], heavy_heftyHashes[thr_id], heavy_nonceVector[thr_id]); |
|
} |
|
}
|
|
|