mirror of
https://github.com/GOSTSec/ccminer
synced 2025-01-22 20:44:49 +00:00
215 lines
9.1 KiB
C
215 lines
9.1 KiB
C
/**
|
|
* Implementation of the Lyra2 Password Hashing Scheme (PHS).
|
|
*
|
|
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
|
*
|
|
* This software is hereby placed in the public domain.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
|
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
|
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
|
|
#include "Lyra2.h"
|
|
#include "Sponge.h"
|
|
|
|
/**
|
|
* Executes Lyra2 based on the G function from Blake2b. This version supports salts and passwords
|
|
* whose combined length is smaller than the size of the memory matrix, (i.e., (nRows x nCols x b) bits,
|
|
* where "b" is the underlying sponge's bitrate). In this implementation, the "basil" is composed by all
|
|
* integer parameters (treated as type "unsigned int") in the order they are provided, plus the value
|
|
* of nCols, (i.e., basil = kLen || pwdlen || saltlen || timeCost || nRows || nCols).
|
|
*
|
|
* @param K The derived key to be output by the algorithm
|
|
* @param kLen Desired key length
|
|
* @param pwd User password
|
|
* @param pwdlen Password length
|
|
* @param salt Salt
|
|
* @param saltlen Salt length
|
|
* @param timeCost Parameter to determine the processing time (T)
|
|
* @param nRows Number or rows of the memory matrix (R)
|
|
* @param nCols Number of columns of the memory matrix (C)
|
|
*
|
|
* @return 0 if the key is generated correctly; -1 if there is an error (usually due to lack of memory for allocation)
|
|
*/
|
|
int LYRA2(void *K, int64_t kLen, const void *pwd, int32_t pwdlen, const void *salt, int32_t saltlen, int64_t timeCost, const int16_t nRows, const int16_t nCols)
|
|
{
|
|
//============================= Basic variables ============================//
|
|
int64_t row = 2; //index of row to be processed
|
|
int64_t prev = 1; //index of prev (last row ever computed/modified)
|
|
int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering)
|
|
int64_t tau; //Time Loop iterator
|
|
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
|
|
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
|
|
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
|
|
int64_t i; //auxiliary iteration counter
|
|
int64_t v64; // 64bit var for memcpy
|
|
//==========================================================================/
|
|
|
|
//========== Initializing the Memory Matrix and pointers to it =============//
|
|
//Tries to allocate enough space for the whole memory matrix
|
|
|
|
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
|
|
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
|
|
// for Lyra2REv2, nCols = 4, v1 was using 8
|
|
const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64 : BLOCK_LEN_BLAKE2_SAFE_BYTES;
|
|
|
|
size_t sz = (size_t)ROW_LEN_BYTES * nRows;
|
|
uint64_t *wholeMatrix = malloc(sz);
|
|
if (wholeMatrix == NULL) {
|
|
return -1;
|
|
}
|
|
memset(wholeMatrix, 0, sz);
|
|
|
|
//Allocates pointers to each row of the matrix
|
|
uint64_t **memMatrix = malloc(sizeof(uint64_t*) * nRows);
|
|
if (memMatrix == NULL) {
|
|
return -1;
|
|
}
|
|
//Places the pointers in the correct positions
|
|
uint64_t *ptrWord = wholeMatrix;
|
|
for (i = 0; i < nRows; i++) {
|
|
memMatrix[i] = ptrWord;
|
|
ptrWord += ROW_LEN_INT64;
|
|
}
|
|
//==========================================================================/
|
|
|
|
//============= Getting the password + salt + basil padded with 10*1 ===============//
|
|
//OBS.:The memory matrix will temporarily hold the password: not for saving memory,
|
|
//but this ensures that the password copied locally will be overwritten as soon as possible
|
|
|
|
//First, we clean enough blocks for the password, salt, basil and padding
|
|
int64_t nBlocksInput = ((saltlen + pwdlen + 6 * sizeof(uint64_t)) / BLOCK_LEN_BLAKE2_SAFE_BYTES) + 1;
|
|
|
|
byte *ptrByte = (byte*) wholeMatrix;
|
|
|
|
//Prepends the password
|
|
memcpy(ptrByte, pwd, pwdlen);
|
|
ptrByte += pwdlen;
|
|
|
|
//Concatenates the salt
|
|
memcpy(ptrByte, salt, saltlen);
|
|
ptrByte += saltlen;
|
|
|
|
memset(ptrByte, 0, (size_t) (nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - (saltlen + pwdlen)));
|
|
|
|
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
|
|
memcpy(ptrByte, &kLen, sizeof(int64_t));
|
|
ptrByte += sizeof(uint64_t);
|
|
v64 = pwdlen;
|
|
memcpy(ptrByte, &v64, sizeof(int64_t));
|
|
ptrByte += sizeof(uint64_t);
|
|
v64 = saltlen;
|
|
memcpy(ptrByte, &v64, sizeof(int64_t));
|
|
ptrByte += sizeof(uint64_t);
|
|
v64 = timeCost;
|
|
memcpy(ptrByte, &v64, sizeof(int64_t));
|
|
ptrByte += sizeof(uint64_t);
|
|
v64 = nRows;
|
|
memcpy(ptrByte, &v64, sizeof(int64_t));
|
|
ptrByte += sizeof(uint64_t);
|
|
v64 = nCols;
|
|
memcpy(ptrByte, &v64, sizeof(int64_t));
|
|
ptrByte += sizeof(uint64_t);
|
|
|
|
//Now comes the padding
|
|
*ptrByte = 0x80; //first byte of padding: right after the password
|
|
ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix
|
|
ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block
|
|
*ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block
|
|
//==========================================================================/
|
|
|
|
//======================= Initializing the Sponge State ====================//
|
|
//Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c)
|
|
uint64_t state[16];
|
|
initState(state);
|
|
//==========================================================================/
|
|
|
|
//================================ Setup Phase =============================//
|
|
//Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits
|
|
ptrWord = wholeMatrix;
|
|
for (i = 0; i < nBlocksInput; i++) {
|
|
absorbBlockBlake2Safe(state, ptrWord); //absorbs each block of pad(pwd || salt || basil)
|
|
ptrWord += BLOCK_LEN; //goes to next block of pad(pwd || salt || basil)
|
|
}
|
|
|
|
//Initializes M[0] and M[1]
|
|
reducedSqueezeRow0(state, memMatrix[0], nCols); //The locally copied password is most likely overwritten here
|
|
|
|
reducedDuplexRow1(state, memMatrix[0], memMatrix[1], nCols);
|
|
|
|
do {
|
|
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
|
|
|
|
reducedDuplexRowSetup(state, memMatrix[prev], memMatrix[rowa], memMatrix[row], nCols);
|
|
|
|
//updates the value of row* (deterministically picked during Setup))
|
|
rowa = (rowa + step) & (window - 1);
|
|
//update prev: it now points to the last row ever computed
|
|
prev = row;
|
|
//updates row: goes to the next row to be computed
|
|
row++;
|
|
|
|
//Checks if all rows in the window where visited.
|
|
if (rowa == 0) {
|
|
step = window + gap; //changes the step: approximately doubles its value
|
|
window *= 2; //doubles the size of the re-visitation window
|
|
gap = -gap; //inverts the modifier to the step
|
|
}
|
|
|
|
} while (row < nRows);
|
|
//==========================================================================/
|
|
|
|
//============================ Wandering Phase =============================//
|
|
row = 0; //Resets the visitation to the first row of the memory matrix
|
|
for (tau = 1; tau <= timeCost; tau++) {
|
|
//Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1
|
|
step = (tau % 2 == 0) ? -1 : nRows / 2 - 1;
|
|
do {
|
|
//Selects a pseudorandom index row*
|
|
//------------------------------------------------------------------------------------------
|
|
rowa = state[0] & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
|
|
//rowa = state[0] % nRows; //(USE THIS FOR THE "GENERIC" CASE)
|
|
//------------------------------------------------------------------------------------------
|
|
|
|
//Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row]
|
|
reducedDuplexRow(state, memMatrix[prev], memMatrix[rowa], memMatrix[row], nCols);
|
|
|
|
//update prev: it now points to the last row ever computed
|
|
prev = row;
|
|
|
|
//updates row: goes to the next row to be computed
|
|
//------------------------------------------------------------------------------------------
|
|
row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
|
|
//row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
|
|
//------------------------------------------------------------------------------------------
|
|
|
|
} while (row != 0);
|
|
}
|
|
|
|
//============================ Wrap-up Phase ===============================//
|
|
//Absorbs the last block of the memory matrix
|
|
absorbBlock(state, memMatrix[rowa]);
|
|
|
|
//Squeezes the key
|
|
squeeze(state, K, (unsigned int) kLen);
|
|
|
|
//========================= Freeing the memory =============================//
|
|
free(memMatrix);
|
|
free(wholeMatrix);
|
|
|
|
return 0;
|
|
}
|