|
|
#include <cuda.h> |
|
|
#include "cuda_runtime.h" |
|
|
#include "device_launch_parameters.h" |
|
|
#include "sm_30_intrinsics.h" |
|
|
|
|
|
#include <stdio.h> |
|
|
#include <memory.h> |
|
|
#include <stdint.h> |
|
|
|
|
|
// aus cpu-miner.c |
|
|
extern int device_map[8]; |
|
|
|
|
|
// diese Struktur wird in der Init Funktion angefordert |
|
|
static cudaDeviceProp props[8]; |
|
|
|
|
|
static uint32_t *d_tempBranch1Nonces[8]; |
|
|
static uint32_t *d_tempBranch2Nonces[8]; |
|
|
static size_t *d_numValid[8]; |
|
|
static size_t *h_numValid[8]; |
|
|
|
|
|
static uint32_t *d_partSum1[8], *d_partSum2[8]; // 2x partielle summen |
|
|
static uint32_t *d_validTemp1[8], *d_validTemp2[8]; |
|
|
|
|
|
// Zwischenspeicher |
|
|
static uint32_t *d_tempBranchAllNonces[8]; |
|
|
|
|
|
// aus heavy.cu |
|
|
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); |
|
|
|
|
|
|
|
|
|
|
|
// Setup-Funktionen |
|
|
__host__ void jackpot_compactTest_cpu_init(int thr_id, int threads) |
|
|
{ |
|
|
cudaGetDeviceProperties(&props[thr_id], device_map[thr_id]); |
|
|
|
|
|
// wir brauchen auch Speicherplatz auf dem Device |
|
|
cudaMalloc(&d_tempBranchAllNonces[thr_id], sizeof(uint32_t) * threads); |
|
|
cudaMalloc(&d_tempBranch1Nonces[thr_id], sizeof(uint32_t) * threads); |
|
|
cudaMalloc(&d_tempBranch2Nonces[thr_id], sizeof(uint32_t) * threads); |
|
|
cudaMalloc(&d_numValid[thr_id], 2*sizeof(size_t)); |
|
|
cudaMallocHost(&h_numValid[thr_id], 2*sizeof(size_t)); |
|
|
|
|
|
uint32_t s1; |
|
|
s1 = threads / 256; |
|
|
|
|
|
cudaMalloc(&d_partSum1[thr_id], sizeof(uint32_t) * s1); // BLOCKSIZE (Threads/Block) |
|
|
cudaMalloc(&d_partSum2[thr_id], sizeof(uint32_t) * s1); // BLOCKSIZE (Threads/Block) |
|
|
|
|
|
cudaMalloc(&d_validTemp1[thr_id], sizeof(uint32_t) * threads); // BLOCKSIZE (Threads/Block) |
|
|
cudaMalloc(&d_validTemp2[thr_id], sizeof(uint32_t) * threads); // BLOCKSIZE (Threads/Block) |
|
|
} |
|
|
|
|
|
// Die Testfunktion (zum Erstellen der TestMap) |
|
|
__global__ void jackpot_compactTest_gpu_TEST_64(int threads, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_noncesFull, |
|
|
uint32_t *d_nonces1, uint32_t *d_nonces2, |
|
|
uint32_t *d_validT1, uint32_t *d_validT2) |
|
|
{ |
|
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
|
if (thread < threads) |
|
|
{ |
|
|
// bestimme den aktuellen Z<EFBFBD>hler |
|
|
uint32_t nounce = startNounce + thread; |
|
|
uint32_t *inpHash = &inpHashes[16 * thread]; |
|
|
|
|
|
uint32_t tmp = inpHash[0] & 0x01; |
|
|
uint32_t val1 = (tmp == 1); |
|
|
uint32_t val2 = (tmp == 0); |
|
|
|
|
|
d_nonces1[thread] = val1; |
|
|
d_validT1[thread] = val1; |
|
|
d_nonces2[thread] = val2; |
|
|
d_validT2[thread] = val2; |
|
|
d_noncesFull[thread] = nounce; |
|
|
} |
|
|
} |
|
|
|
|
|
// Die Summenfunktion (vom NVIDIA SDK) |
|
|
__global__ void jackpot_compactTest_gpu_SCAN(uint32_t *data, int width, uint32_t *partial_sums=NULL) |
|
|
{ |
|
|
extern __shared__ uint32_t sums[]; |
|
|
int id = ((blockIdx.x * blockDim.x) + threadIdx.x); |
|
|
//int lane_id = id % warpSize; |
|
|
int lane_id = id % width; |
|
|
// determine a warp_id within a block |
|
|
//int warp_id = threadIdx.x / warpSize; |
|
|
int warp_id = threadIdx.x / width; |
|
|
|
|
|
// Below is the basic structure of using a shfl instruction |
|
|
// for a scan. |
|
|
// Record "value" as a variable - we accumulate it along the way |
|
|
uint32_t value = data[id]; |
|
|
|
|
|
// Now accumulate in log steps up the chain |
|
|
// compute sums, with another thread's value who is |
|
|
// distance delta away (i). Note |
|
|
// those threads where the thread 'i' away would have |
|
|
// been out of bounds of the warp are unaffected. This |
|
|
// creates the scan sum. |
|
|
#pragma unroll |
|
|
|
|
|
for (int i=1; i<=width; i*=2) |
|
|
{ |
|
|
uint32_t n = __shfl_up((int)value, i, width); |
|
|
|
|
|
if (lane_id >= i) value += n; |
|
|
} |
|
|
|
|
|
// value now holds the scan value for the individual thread |
|
|
// next sum the largest values for each warp |
|
|
|
|
|
// write the sum of the warp to smem |
|
|
//if (threadIdx.x % warpSize == warpSize-1) |
|
|
if (threadIdx.x % width == width-1) |
|
|
{ |
|
|
sums[warp_id] = value; |
|
|
} |
|
|
|
|
|
__syncthreads(); |
|
|
|
|
|
// |
|
|
// scan sum the warp sums |
|
|
// the same shfl scan operation, but performed on warp sums |
|
|
// |
|
|
if (warp_id == 0) |
|
|
{ |
|
|
uint32_t warp_sum = sums[lane_id]; |
|
|
|
|
|
for (int i=1; i<=width; i*=2) |
|
|
{ |
|
|
uint32_t n = __shfl_up((int)warp_sum, i, width); |
|
|
|
|
|
if (lane_id >= i) warp_sum += n; |
|
|
} |
|
|
|
|
|
sums[lane_id] = warp_sum; |
|
|
} |
|
|
|
|
|
__syncthreads(); |
|
|
|
|
|
// perform a uniform add across warps in the block |
|
|
// read neighbouring warp's sum and add it to threads value |
|
|
uint32_t blockSum = 0; |
|
|
|
|
|
if (warp_id > 0) |
|
|
{ |
|
|
blockSum = sums[warp_id-1]; |
|
|
} |
|
|
|
|
|
value += blockSum; |
|
|
|
|
|
// Now write out our result |
|
|
data[id] = value; |
|
|
|
|
|
// last thread has sum, write write out the block's sum |
|
|
if (partial_sums != NULL && threadIdx.x == blockDim.x-1) |
|
|
{ |
|
|
partial_sums[blockIdx.x] = value; |
|
|
} |
|
|
} |
|
|
|
|
|
// Uniform add: add partial sums array |
|
|
__global__ void jackpot_compactTest_gpu_ADD(uint32_t *data, uint32_t *partial_sums, int len) |
|
|
{ |
|
|
__shared__ uint32_t buf; |
|
|
int id = ((blockIdx.x * blockDim.x) + threadIdx.x); |
|
|
|
|
|
if (id > len) return; |
|
|
|
|
|
if (threadIdx.x == 0) |
|
|
{ |
|
|
buf = partial_sums[blockIdx.x]; |
|
|
} |
|
|
|
|
|
__syncthreads(); |
|
|
data[id] += buf; |
|
|
} |
|
|
|
|
|
// Der Scatter |
|
|
__global__ void jackpot_compactTest_gpu_SCATTER(uint32_t *data, uint32_t *valid, uint32_t *sum, uint32_t *outp) |
|
|
{ |
|
|
int id = ((blockIdx.x * blockDim.x) + threadIdx.x); |
|
|
if( valid[id] ) |
|
|
{ |
|
|
int idx = sum[id]; |
|
|
if(idx > 0) |
|
|
outp[idx-1] = data[id]; |
|
|
} |
|
|
} |
|
|
|
|
|
////// ACHTUNG: Diese funktion geht aktuell nur mit threads > 65536 (Am besten 256 * 1024 oder 256*2048) |
|
|
__host__ void jackpot_compactTest_cpu_dualCompaction(int thr_id, int threads, size_t *nrm, |
|
|
uint32_t *d_nonces1, uint32_t *d_nonces2) |
|
|
{ |
|
|
// threadsPerBlock ausrechnen |
|
|
int blockSize = 256; |
|
|
int thr1 = threads / blockSize; |
|
|
int thr2 = threads / (blockSize*blockSize); |
|
|
|
|
|
// 1 |
|
|
jackpot_compactTest_gpu_SCAN<<<thr1,blockSize, 8*sizeof(uint32_t)>>>(d_tempBranch1Nonces[thr_id], 32, d_partSum1[thr_id]); |
|
|
jackpot_compactTest_gpu_SCAN<<<thr2,blockSize, 8*sizeof(uint32_t)>>>(d_partSum1[thr_id], 32, d_partSum2[thr_id]); |
|
|
jackpot_compactTest_gpu_SCAN<<<1, thr2, 8*sizeof(uint32_t)>>>(d_partSum2[thr_id], (thr2>32) ? 32 : thr2); |
|
|
cudaStreamSynchronize(NULL); |
|
|
cudaMemcpy(&nrm[0], &(d_partSum2[thr_id])[thr2-1], sizeof(uint32_t), cudaMemcpyDeviceToHost); |
|
|
jackpot_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum1[thr_id]+blockSize, d_partSum2[thr_id], blockSize*thr2); |
|
|
jackpot_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch1Nonces[thr_id]+blockSize, d_partSum1[thr_id], threads); |
|
|
|
|
|
// 2 |
|
|
jackpot_compactTest_gpu_SCAN<<<thr1,blockSize, 8*sizeof(uint32_t)>>>(d_tempBranch2Nonces[thr_id], 32, d_partSum1[thr_id]); |
|
|
jackpot_compactTest_gpu_SCAN<<<thr2,blockSize, 8*sizeof(uint32_t)>>>(d_partSum1[thr_id], 32, d_partSum2[thr_id]); |
|
|
jackpot_compactTest_gpu_SCAN<<<1, thr2, 8*sizeof(uint32_t)>>>(d_partSum2[thr_id], (thr2>32) ? 32 : thr2); |
|
|
cudaStreamSynchronize(NULL); |
|
|
cudaMemcpy(&nrm[1], &(d_partSum2[thr_id])[thr2-1], sizeof(uint32_t), cudaMemcpyDeviceToHost); |
|
|
jackpot_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum1[thr_id]+blockSize, d_partSum2[thr_id], blockSize*thr2); |
|
|
jackpot_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch2Nonces[thr_id]+blockSize, d_partSum1[thr_id], threads); |
|
|
|
|
|
// Hier ist noch eine Besonderheit: in d_tempBranch1Nonces sind die element von 1...nrm1 die Interessanten |
|
|
// Schritt 3: Scatter |
|
|
jackpot_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranchAllNonces[thr_id], d_validTemp1[thr_id], d_tempBranch1Nonces[thr_id], d_nonces1); |
|
|
jackpot_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranchAllNonces[thr_id], d_validTemp2[thr_id], d_tempBranch2Nonces[thr_id], d_nonces2); |
|
|
cudaStreamSynchronize(NULL); |
|
|
} |
|
|
|
|
|
__host__ void jackpot_compactTest_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *inpHashes, |
|
|
uint32_t *d_nonces1, size_t *nrm1, |
|
|
uint32_t *d_nonces2, size_t *nrm2, |
|
|
int order) |
|
|
{ |
|
|
// Compute 3.x und 5.x Ger<EFBFBD>te am besten mit 768 Threads ansteuern, |
|
|
// alle anderen mit 512 Threads. |
|
|
//int threadsperblock = (props[thr_id].major >= 3) ? 768 : 512; |
|
|
int threadsperblock = 256; |
|
|
|
|
|
// berechne wie viele Thread Blocks wir brauchen |
|
|
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
|
|
dim3 block(threadsperblock); |
|
|
|
|
|
size_t shared_size = 0; |
|
|
|
|
|
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); |
|
|
|
|
|
// Schritt 1: Pr<EFBFBD>fen der Bedingung und Speicherung in d_tempBranch1/2Nonces |
|
|
jackpot_compactTest_gpu_TEST_64<<<grid, block, shared_size>>>(threads, startNounce, inpHashes, d_tempBranchAllNonces[thr_id], |
|
|
d_tempBranch1Nonces[thr_id], d_tempBranch2Nonces[thr_id], |
|
|
d_validTemp1[thr_id], d_validTemp2[thr_id]); |
|
|
|
|
|
// Strategisches Sleep Kommando zur Senkung der CPU Last |
|
|
jackpot_compactTest_cpu_dualCompaction(thr_id, threads, |
|
|
h_numValid[thr_id], d_nonces1, d_nonces2); |
|
|
|
|
|
cudaStreamSynchronize(NULL); // Das original braucht zwar etwas CPU-Last, ist an dieser Stelle aber evtl besser |
|
|
*nrm1 = h_numValid[thr_id][0]; |
|
|
*nrm2 = h_numValid[thr_id][1]; |
|
|
}
|
|
|
|