mirror of
https://github.com/GOSTSec/ccminer
synced 2025-01-09 14:28:15 +00:00
478 lines
15 KiB
Plaintext
478 lines
15 KiB
Plaintext
// Auf Groestlcoin spezialisierte Version von Groestl
|
|
|
|
#include <cuda.h>
|
|
#include "cuda_runtime.h"
|
|
#include "device_launch_parameters.h"
|
|
|
|
#include <stdio.h>
|
|
#include <memory.h>
|
|
|
|
// it's unfortunate that this is a compile time constant.
|
|
#define MAXWELL_OR_FERMI 1
|
|
|
|
// aus cpu-miner.c
|
|
extern int device_map[8];
|
|
|
|
// aus heavy.cu
|
|
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
|
|
|
|
// aus driver.c
|
|
extern "C" void set_device(int device);
|
|
|
|
// Folgende Definitionen später durch header ersetzen
|
|
typedef unsigned char uint8_t;
|
|
typedef unsigned int uint32_t;
|
|
typedef unsigned long long uint64_t;
|
|
|
|
// diese Struktur wird in der Init Funktion angefordert
|
|
static cudaDeviceProp props;
|
|
|
|
// globaler Speicher für alle HeftyHashes aller Threads
|
|
__constant__ uint32_t pTarget[8]; // Single GPU
|
|
extern uint32_t *d_resultNonce[8];
|
|
|
|
__constant__ uint32_t groestlcoin_gpu_msg[32];
|
|
|
|
#define SPH_C32(x) ((uint32_t)(x ## U))
|
|
#define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF))
|
|
|
|
#define PC32up(j, r) ((uint32_t)((j) + (r)))
|
|
#define PC32dn(j, r) 0
|
|
#define QC32up(j, r) 0xFFFFFFFF
|
|
#define QC32dn(j, r) (((uint32_t)(r) << 24) ^ SPH_T32(~((uint32_t)(j) << 24)))
|
|
|
|
#define B32_0(x) __byte_perm(x, 0, 0x4440)
|
|
//((x) & 0xFF)
|
|
#define B32_1(x) __byte_perm(x, 0, 0x4441)
|
|
//(((x) >> 8) & 0xFF)
|
|
#define B32_2(x) __byte_perm(x, 0, 0x4442)
|
|
//(((x) >> 16) & 0xFF)
|
|
#define B32_3(x) __byte_perm(x, 0, 0x4443)
|
|
//((x) >> 24)
|
|
|
|
#if MAXWELL_OR_FERMI
|
|
#define USE_SHARED 1
|
|
// Maxwell and Fermi cards get the best speed with SHARED access it seems.
|
|
#if USE_SHARED
|
|
#define T0up(x) (*((uint32_t*)mixtabs + ( (x))))
|
|
#define T0dn(x) (*((uint32_t*)mixtabs + (256+(x))))
|
|
#define T1up(x) (*((uint32_t*)mixtabs + (512+(x))))
|
|
#define T1dn(x) (*((uint32_t*)mixtabs + (768+(x))))
|
|
#define T2up(x) (*((uint32_t*)mixtabs + (1024+(x))))
|
|
#define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x))))
|
|
#define T3up(x) (*((uint32_t*)mixtabs + (1536+(x))))
|
|
#define T3dn(x) (*((uint32_t*)mixtabs + (1792+(x))))
|
|
#else
|
|
#define T0up(x) tex1Dfetch(t0up1, x)
|
|
#define T0dn(x) tex1Dfetch(t0dn1, x)
|
|
#define T1up(x) tex1Dfetch(t1up1, x)
|
|
#define T1dn(x) tex1Dfetch(t1dn1, x)
|
|
#define T2up(x) tex1Dfetch(t2up1, x)
|
|
#define T2dn(x) tex1Dfetch(t2dn1, x)
|
|
#define T3up(x) tex1Dfetch(t3up1, x)
|
|
#define T3dn(x) tex1Dfetch(t3dn1, x)
|
|
#endif
|
|
#else
|
|
#define USE_SHARED 1
|
|
// a healthy mix between shared and textured access provides the highest speed on Compute 3.0 and 3.5!
|
|
#define T0up(x) (*((uint32_t*)mixtabs + ( (x))))
|
|
#define T0dn(x) tex1Dfetch(t0dn1, x)
|
|
#define T1up(x) tex1Dfetch(t1up1, x)
|
|
#define T1dn(x) (*((uint32_t*)mixtabs + (768+(x))))
|
|
#define T2up(x) tex1Dfetch(t2up1, x)
|
|
#define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x))))
|
|
#define T3up(x) (*((uint32_t*)mixtabs + (1536+(x))))
|
|
#define T3dn(x) tex1Dfetch(t3dn1, x)
|
|
#endif
|
|
|
|
texture<unsigned int, 1, cudaReadModeElementType> t0up1;
|
|
texture<unsigned int, 1, cudaReadModeElementType> t0dn1;
|
|
texture<unsigned int, 1, cudaReadModeElementType> t1up1;
|
|
texture<unsigned int, 1, cudaReadModeElementType> t1dn1;
|
|
texture<unsigned int, 1, cudaReadModeElementType> t2up1;
|
|
texture<unsigned int, 1, cudaReadModeElementType> t2dn1;
|
|
texture<unsigned int, 1, cudaReadModeElementType> t3up1;
|
|
texture<unsigned int, 1, cudaReadModeElementType> t3dn1;
|
|
|
|
extern uint32_t T0up_cpu[];
|
|
extern uint32_t T0dn_cpu[];
|
|
extern uint32_t T1up_cpu[];
|
|
extern uint32_t T1dn_cpu[];
|
|
extern uint32_t T2up_cpu[];
|
|
extern uint32_t T2dn_cpu[];
|
|
extern uint32_t T3up_cpu[];
|
|
extern uint32_t T3dn_cpu[];
|
|
|
|
#define SWAB32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) )
|
|
|
|
|
|
__device__ __forceinline__ void groestlcoin_perm_P(uint32_t *a, char *mixtabs)
|
|
{
|
|
uint32_t t[32];
|
|
|
|
//#pragma unroll 14
|
|
for(int r=0;r<14;r++)
|
|
{
|
|
switch(r)
|
|
{
|
|
case 0:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 0); break;
|
|
case 1:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 1); break;
|
|
case 2:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 2); break;
|
|
case 3:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 3); break;
|
|
case 4:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 4); break;
|
|
case 5:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 5); break;
|
|
case 6:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 6); break;
|
|
case 7:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 7); break;
|
|
case 8:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 8); break;
|
|
case 9:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 9); break;
|
|
case 10:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 10); break;
|
|
case 11:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 11); break;
|
|
case 12:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 12); break;
|
|
case 13:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 13); break;
|
|
}
|
|
|
|
// RBTT
|
|
#pragma unroll 16
|
|
for(int k=0;k<32;k+=2)
|
|
{
|
|
uint32_t t0_0 = B32_0(a[(k ) & 0x1f]), t9_0 = B32_0(a[(k + 9) & 0x1f]);
|
|
uint32_t t2_1 = B32_1(a[(k + 2) & 0x1f]), t11_1 = B32_1(a[(k + 11) & 0x1f]);
|
|
uint32_t t4_2 = B32_2(a[(k + 4) & 0x1f]), t13_2 = B32_2(a[(k + 13) & 0x1f]);
|
|
uint32_t t6_3 = B32_3(a[(k + 6) & 0x1f]), t23_3 = B32_3(a[(k + 23) & 0x1f]);
|
|
|
|
t[k + 0] = T0up( t0_0 ) ^ T1up( t2_1 ) ^ T2up( t4_2 ) ^ T3up( t6_3 ) ^
|
|
T0dn( t9_0 ) ^ T1dn( t11_1 ) ^ T2dn( t13_2 ) ^ T3dn( t23_3 );
|
|
|
|
t[k + 1] = T0dn( t0_0 ) ^ T1dn( t2_1 ) ^ T2dn( t4_2 ) ^ T3dn( t6_3 ) ^
|
|
T0up( t9_0 ) ^ T1up( t11_1 ) ^ T2up( t13_2 ) ^ T3up( t23_3 );
|
|
}
|
|
#pragma unroll 32
|
|
for(int k=0;k<32;k++)
|
|
a[k] = t[k];
|
|
}
|
|
}
|
|
|
|
__device__ __forceinline__ void groestlcoin_perm_Q(uint32_t *a, char *mixtabs)
|
|
{
|
|
//#pragma unroll 14
|
|
for(int r=0;r<14;r++)
|
|
{
|
|
uint32_t t[32];
|
|
|
|
switch(r)
|
|
{
|
|
case 0:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 0); a[(k*2)+1] ^= QC32dn(k * 0x10, 0);} break;
|
|
case 1:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 1); a[(k*2)+1] ^= QC32dn(k * 0x10, 1);} break;
|
|
case 2:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 2); a[(k*2)+1] ^= QC32dn(k * 0x10, 2);} break;
|
|
case 3:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 3); a[(k*2)+1] ^= QC32dn(k * 0x10, 3);} break;
|
|
case 4:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 4); a[(k*2)+1] ^= QC32dn(k * 0x10, 4);} break;
|
|
case 5:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 5); a[(k*2)+1] ^= QC32dn(k * 0x10, 5);} break;
|
|
case 6:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 6); a[(k*2)+1] ^= QC32dn(k * 0x10, 6);} break;
|
|
case 7:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 7); a[(k*2)+1] ^= QC32dn(k * 0x10, 7);} break;
|
|
case 8:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 8); a[(k*2)+1] ^= QC32dn(k * 0x10, 8);} break;
|
|
case 9:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 9); a[(k*2)+1] ^= QC32dn(k * 0x10, 9);} break;
|
|
case 10:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 10); a[(k*2)+1] ^= QC32dn(k * 0x10, 10);} break;
|
|
case 11:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 11); a[(k*2)+1] ^= QC32dn(k * 0x10, 11);} break;
|
|
case 12:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 12); a[(k*2)+1] ^= QC32dn(k * 0x10, 12);} break;
|
|
case 13:
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 13); a[(k*2)+1] ^= QC32dn(k * 0x10, 13);} break;
|
|
}
|
|
|
|
// RBTT
|
|
#pragma unroll 16
|
|
for(int k=0;k<32;k+=2)
|
|
{
|
|
uint32_t t2_0 = B32_0(a[(k + 2) & 0x1f]), t1_0 = B32_0(a[(k + 1) & 0x1f]);
|
|
uint32_t t6_1 = B32_1(a[(k + 6) & 0x1f]), t5_1 = B32_1(a[(k + 5) & 0x1f]);
|
|
uint32_t t10_2 = B32_2(a[(k + 10) & 0x1f]), t9_2 = B32_2(a[(k + 9) & 0x1f]);
|
|
uint32_t t22_3 = B32_3(a[(k + 22) & 0x1f]), t13_3 = B32_3(a[(k + 13) & 0x1f]);
|
|
|
|
t[k + 0] = T0up( t2_0 ) ^ T1up( t6_1 ) ^ T2up( t10_2 ) ^ T3up( t22_3 ) ^
|
|
T0dn( t1_0 ) ^ T1dn( t5_1 ) ^ T2dn( t9_2 ) ^ T3dn( t13_3 );
|
|
|
|
t[k + 1] = T0dn( t2_0 ) ^ T1dn( t6_1 ) ^ T2dn( t10_2 ) ^ T3dn( t22_3 ) ^
|
|
T0up( t1_0 ) ^ T1up( t5_1 ) ^ T2up( t9_2 ) ^ T3up( t13_3 );
|
|
}
|
|
#pragma unroll 32
|
|
for(int k=0;k<32;k++)
|
|
a[k] = t[k];
|
|
}
|
|
}
|
|
#if USE_SHARED
|
|
__global__ void /* __launch_bounds__(256) */
|
|
#else
|
|
__global__ void
|
|
#endif
|
|
|
|
groestlcoin_gpu_hash(int threads, uint32_t startNounce, uint32_t *resNounce)
|
|
{
|
|
#if USE_SHARED
|
|
extern __shared__ char mixtabs[];
|
|
|
|
if (threadIdx.x < 256)
|
|
{
|
|
*((uint32_t*)mixtabs + ( threadIdx.x)) = tex1Dfetch(t0up1, threadIdx.x);
|
|
*((uint32_t*)mixtabs + (256+threadIdx.x)) = tex1Dfetch(t0dn1, threadIdx.x);
|
|
*((uint32_t*)mixtabs + (512+threadIdx.x)) = tex1Dfetch(t1up1, threadIdx.x);
|
|
*((uint32_t*)mixtabs + (768+threadIdx.x)) = tex1Dfetch(t1dn1, threadIdx.x);
|
|
*((uint32_t*)mixtabs + (1024+threadIdx.x)) = tex1Dfetch(t2up1, threadIdx.x);
|
|
*((uint32_t*)mixtabs + (1280+threadIdx.x)) = tex1Dfetch(t2dn1, threadIdx.x);
|
|
*((uint32_t*)mixtabs + (1536+threadIdx.x)) = tex1Dfetch(t3up1, threadIdx.x);
|
|
*((uint32_t*)mixtabs + (1792+threadIdx.x)) = tex1Dfetch(t3dn1, threadIdx.x);
|
|
}
|
|
|
|
__syncthreads();
|
|
#endif
|
|
|
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
|
if (thread < threads)
|
|
{
|
|
// GROESTL
|
|
uint32_t message[32];
|
|
uint32_t state[32];
|
|
|
|
#pragma unroll 32
|
|
for(int k=0;k<32;k++) message[k] = groestlcoin_gpu_msg[k];
|
|
|
|
uint32_t nounce = startNounce + thread;
|
|
message[19] = SWAB32(nounce);
|
|
|
|
#pragma unroll 32
|
|
for(int u=0;u<32;u++) state[u] = message[u];
|
|
state[31] ^= 0x20000;
|
|
|
|
// Perm
|
|
#if USE_SHARED
|
|
groestlcoin_perm_P(state, mixtabs);
|
|
state[31] ^= 0x20000;
|
|
groestlcoin_perm_Q(message, mixtabs);
|
|
#else
|
|
groestlcoin_perm_P(state, NULL);
|
|
state[31] ^= 0x20000;
|
|
groestlcoin_perm_Q(message, NULL);
|
|
#endif
|
|
#pragma unroll 32
|
|
for(int u=0;u<32;u++) state[u] ^= message[u];
|
|
|
|
#pragma unroll 32
|
|
for(int u=0;u<32;u++) message[u] = state[u];
|
|
|
|
#if USE_SHARED
|
|
groestlcoin_perm_P(message, mixtabs);
|
|
#else
|
|
groestlcoin_perm_P(message, NULL);
|
|
#endif
|
|
|
|
#pragma unroll 32
|
|
for(int u=0;u<32;u++) state[u] ^= message[u];
|
|
|
|
////
|
|
//// 2. Runde groestl
|
|
////
|
|
#pragma unroll 16
|
|
for(int k=0;k<16;k++) message[k] = state[k + 16];
|
|
#pragma unroll 14
|
|
for(int k=1;k<15;k++)
|
|
message[k+16] = 0;
|
|
|
|
message[16] = 0x80;
|
|
message[31] = 0x01000000;
|
|
|
|
#pragma unroll 32
|
|
for(int u=0;u<32;u++)
|
|
state[u] = message[u];
|
|
state[31] ^= 0x20000;
|
|
|
|
// Perm
|
|
#if USE_SHARED
|
|
groestlcoin_perm_P(state, mixtabs);
|
|
state[31] ^= 0x20000;
|
|
groestlcoin_perm_Q(message, mixtabs);
|
|
#else
|
|
groestlcoin_perm_P(state, NULL);
|
|
state[31] ^= 0x20000;
|
|
groestlcoin_perm_Q(message, NULL);
|
|
#endif
|
|
|
|
#pragma unroll 32
|
|
for(int u=0;u<32;u++) state[u] ^= message[u];
|
|
|
|
#pragma unroll 32
|
|
for(int u=0;u<32;u++) message[u] = state[u];
|
|
|
|
#if USE_SHARED
|
|
groestlcoin_perm_P(message, mixtabs);
|
|
#else
|
|
groestlcoin_perm_P(message, NULL);
|
|
#endif
|
|
|
|
#pragma unroll 32
|
|
for(int u=0;u<32;u++) state[u] ^= message[u];
|
|
|
|
// kopiere Ergebnis
|
|
int i, position = -1;
|
|
bool rc = true;
|
|
|
|
#pragma unroll 8
|
|
for (i = 7; i >= 0; i--) {
|
|
if (state[i+16] > pTarget[i]) {
|
|
if(position < i) {
|
|
position = i;
|
|
rc = false;
|
|
}
|
|
}
|
|
if (state[i+16] < pTarget[i]) {
|
|
if(position < i) {
|
|
position = i;
|
|
rc = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(rc == true)
|
|
if(resNounce[0] > nounce)
|
|
resNounce[0] = nounce;
|
|
}
|
|
}
|
|
|
|
#define texDef(texname, texmem, texsource, texsize) \
|
|
unsigned int *texmem; \
|
|
cudaMalloc(&texmem, texsize); \
|
|
cudaMemcpy(texmem, texsource, texsize, cudaMemcpyHostToDevice); \
|
|
texname.normalized = 0; \
|
|
texname.filterMode = cudaFilterModePoint; \
|
|
texname.addressMode[0] = cudaAddressModeClamp; \
|
|
{ cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<unsigned int>(); \
|
|
cudaBindTexture(NULL, &texname, texmem, &channelDesc, texsize ); } \
|
|
|
|
// Setup-Funktionen
|
|
__host__ void groestlcoin_cpu_init(int thr_id, int threads)
|
|
{
|
|
cudaSetDevice(device_map[thr_id]);
|
|
|
|
cudaGetDeviceProperties(&props, device_map[thr_id]);
|
|
|
|
// Texturen mit obigem Makro initialisieren
|
|
texDef(t0up1, d_T0up, T0up_cpu, sizeof(uint32_t)*256);
|
|
texDef(t0dn1, d_T0dn, T0dn_cpu, sizeof(uint32_t)*256);
|
|
texDef(t1up1, d_T1up, T1up_cpu, sizeof(uint32_t)*256);
|
|
texDef(t1dn1, d_T1dn, T1dn_cpu, sizeof(uint32_t)*256);
|
|
texDef(t2up1, d_T2up, T2up_cpu, sizeof(uint32_t)*256);
|
|
texDef(t2dn1, d_T2dn, T2dn_cpu, sizeof(uint32_t)*256);
|
|
texDef(t3up1, d_T3up, T3up_cpu, sizeof(uint32_t)*256);
|
|
texDef(t3dn1, d_T3dn, T3dn_cpu, sizeof(uint32_t)*256);
|
|
|
|
// Speicher für Gewinner-Nonce belegen
|
|
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t));
|
|
}
|
|
|
|
__host__ void groestlcoin_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
|
|
{
|
|
// Nachricht expandieren und setzen
|
|
uint32_t msgBlock[32];
|
|
|
|
memset(msgBlock, 0, sizeof(uint32_t) * 32);
|
|
memcpy(&msgBlock[0], data, 80);
|
|
|
|
// Erweitere die Nachricht auf den Nachrichtenblock (padding)
|
|
// Unsere Nachricht hat 80 Byte
|
|
msgBlock[20] = 0x80;
|
|
msgBlock[31] = 0x01000000;
|
|
|
|
// groestl512 braucht hierfür keinen CPU-Code (die einzige Runde wird
|
|
// auf der GPU ausgeführt)
|
|
|
|
// Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch)
|
|
cudaMemcpyToSymbol( groestlcoin_gpu_msg,
|
|
msgBlock,
|
|
128);
|
|
|
|
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
|
|
cudaMemcpyToSymbol( pTarget,
|
|
pTargetIn,
|
|
sizeof(uint32_t) * 8 );
|
|
}
|
|
|
|
__host__ void groestlcoin_cpu_hash(int thr_id, int threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce)
|
|
{
|
|
// Compute 3.x und 5.x Geräte am besten mit 768 Threads ansteuern,
|
|
// alle anderen mit 512 Threads.
|
|
int threadsperblock = (props.major >= 3) ? 768 : 512;
|
|
|
|
// berechne wie viele Thread Blocks wir brauchen
|
|
dim3 grid((threads + threadsperblock-1)/threadsperblock);
|
|
dim3 block(threadsperblock);
|
|
|
|
// Größe des dynamischen Shared Memory Bereichs
|
|
#if USE_SHARED
|
|
size_t shared_size = 8 * 256 * sizeof(uint32_t);
|
|
#else
|
|
size_t shared_size = 0;
|
|
#endif
|
|
|
|
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size);
|
|
//fprintf(stderr, "ThrID: %d\n", thr_id);
|
|
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
|
|
groestlcoin_gpu_hash<<<grid, block, shared_size>>>(threads, startNounce, d_resultNonce[thr_id]);
|
|
|
|
// Strategisches Sleep Kommando zur Senkung der CPU Last
|
|
MyStreamSynchronize(NULL, 0, thr_id);
|
|
|
|
cudaMemcpy(nounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
|
|
}
|