mirror of https://github.com/GOSTSec/ccminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
492 lines
14 KiB
492 lines
14 KiB
/** |
|
* Optimized Blake-256 8-rounds Cuda Kernel (Tested on SM >3.0) |
|
* Based upon Blake-256 implementation of Tanguy Pruvot - Nov. 2014 |
|
* |
|
* Provos Alexis - Jan. 2016 |
|
* |
|
* Fixed CUDA 7.5 flaw |
|
* minor code changes |
|
* code cleanup |
|
* increased nonces per thread |
|
* removed SSE2 midstate computation |
|
* Provos Alexis - Mar 2016 |
|
*/ |
|
|
|
#include <stdint.h> |
|
#include <memory.h> |
|
|
|
#include "miner.h" |
|
|
|
extern "C" { |
|
#include "sph/sph_blake.h" |
|
} |
|
|
|
#include "cuda_helper.h" |
|
|
|
#ifdef __INTELLISENSE__ |
|
#define __byte_perm(x, y, b) x |
|
#endif |
|
|
|
/* threads per block and nonces per thread */ |
|
#define TPB 768 |
|
#define NPT 384 |
|
#define NBN 2 |
|
|
|
__constant__ uint32_t _ALIGN(16) d_data[21]; |
|
|
|
/* 16 gpu threads max */ |
|
static uint32_t *d_resNonce[MAX_GPUS]; |
|
static uint32_t *h_resNonce[MAX_GPUS]; |
|
static cudaStream_t streams[MAX_GPUS]; |
|
|
|
/* hash by cpu with blake 256 */ |
|
extern "C" void vanillahash(void *output, const void *input, int8_t blakerounds){ |
|
uchar hash[64]; |
|
sph_blake256_context ctx; |
|
|
|
sph_blake256_set_rounds(blakerounds); |
|
|
|
sph_blake256_init(&ctx); |
|
sph_blake256(&ctx, input, 80); |
|
sph_blake256_close(&ctx, hash); |
|
|
|
memcpy(output, hash, 32); |
|
} |
|
#define GS4(a,b,c,d,x,y,a1,b1,c1,d1,x1,y1,a2,b2,c2,d2,x2,y2,a3,b3,c3,d3,x3,y3) { \ |
|
v[ a]+= (m[ x] ^ z[ y]) + v[ b]; \ |
|
v[a1]+= (m[x1] ^ z[y1]) + v[b1]; \ |
|
v[a2]+= (m[x2] ^ z[y2]) + v[b2]; \ |
|
v[a3]+= (m[x3] ^ z[y3]) + v[b3]; \ |
|
\ |
|
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); \ |
|
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \ |
|
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x1032); \ |
|
v[d3] = __byte_perm(v[d3] ^ v[a3], 0, 0x1032); \ |
|
\ |
|
v[ c]+= v[ d]; \ |
|
v[c1]+= v[d1]; \ |
|
v[c2]+= v[d2]; \ |
|
v[c3]+= v[d3]; \ |
|
\ |
|
v[ b] = ROTR32(v[ b] ^ v[ c], 12); \ |
|
v[b1] = ROTR32(v[b1] ^ v[c1], 12); \ |
|
v[b2] = ROTR32(v[b2] ^ v[c2], 12); \ |
|
v[b3] = ROTR32(v[b3] ^ v[c3], 12); \ |
|
\ |
|
v[ a]+= (m[ y] ^ z[ x]) + v[ b]; \ |
|
v[a1]+= (m[y1] ^ z[x1]) + v[b1]; \ |
|
v[a2]+= (m[y2] ^ z[x2]) + v[b2]; \ |
|
v[a3]+= (m[y3] ^ z[x3]) + v[b3]; \ |
|
\ |
|
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); \ |
|
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \ |
|
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x0321); \ |
|
v[d3] = __byte_perm(v[d3] ^ v[a3], 0, 0x0321); \ |
|
\ |
|
v[ c]+= v[ d]; \ |
|
v[c1]+= v[d1]; \ |
|
v[c2]+= v[d2]; \ |
|
v[c3]+= v[d3]; \ |
|
\ |
|
v[ b] = ROTR32(v[ b] ^ v[ c], 7); \ |
|
v[b1] = ROTR32(v[b1] ^ v[c1], 7); \ |
|
v[b2] = ROTR32(v[b2] ^ v[c2], 7); \ |
|
v[b3] = ROTR32(v[b3] ^ v[c3], 7); \ |
|
} |
|
|
|
#define GS3(a,b,c,d,x,y,a1,b1,c1,d1,x1,y1,a2,b2,c2,d2,x2,y2) { \ |
|
v[ a]+= (m[ x] ^ z[ y]) + v[ b]; \ |
|
v[a1]+= (m[x1] ^ z[y1]) + v[b1]; \ |
|
v[a2]+= (m[x2] ^ z[y2]) + v[b2]; \ |
|
\ |
|
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); \ |
|
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \ |
|
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x1032); \ |
|
\ |
|
v[ c]+= v[ d]; \ |
|
v[c1]+= v[d1]; \ |
|
v[c2]+= v[d2]; \ |
|
\ |
|
v[ b] = ROTR32(v[ b] ^ v[ c], 12); \ |
|
v[b1] = ROTR32(v[b1] ^ v[c1], 12); \ |
|
v[b2] = ROTR32(v[b2] ^ v[c2], 12); \ |
|
\ |
|
v[ a]+= (m[ y] ^ z[ x]) + v[ b]; \ |
|
v[a1]+= (m[y1] ^ z[x1]) + v[b1]; \ |
|
v[a2]+= (m[y2] ^ z[x2]) + v[b2]; \ |
|
\ |
|
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); \ |
|
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \ |
|
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x0321); \ |
|
\ |
|
v[ c]+= v[ d]; \ |
|
v[c1]+= v[d1]; \ |
|
v[c2]+= v[d2]; \ |
|
\ |
|
v[ b] = ROTR32(v[ b] ^ v[ c], 7); \ |
|
v[b1] = ROTR32(v[b1] ^ v[c1], 7); \ |
|
v[b2] = ROTR32(v[b2] ^ v[c2], 7); \ |
|
} |
|
|
|
#define GS2(a,b,c,d,x,y,a1,b1,c1,d1,x1,y1) { \ |
|
v[ a]+= (m[ x] ^ z[ y]) + v[ b]; \ |
|
v[a1]+= (m[x1] ^ z[y1]) + v[b1]; \ |
|
\ |
|
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); \ |
|
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \ |
|
\ |
|
v[ c]+= v[ d]; \ |
|
v[c1]+= v[d1]; \ |
|
\ |
|
v[ b] = ROTR32(v[ b] ^ v[ c], 12); \ |
|
v[b1] = ROTR32(v[b1] ^ v[c1], 12); \ |
|
\ |
|
v[ a]+= (m[ y] ^ z[ x]) + v[ b]; \ |
|
v[a1]+= (m[y1] ^ z[x1]) + v[b1]; \ |
|
\ |
|
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); \ |
|
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \ |
|
\ |
|
v[ c]+= v[ d]; \ |
|
v[c1]+= v[d1]; \ |
|
\ |
|
v[ b] = ROTR32(v[ b] ^ v[ c], 7); \ |
|
v[b1] = ROTR32(v[b1] ^ v[c1], 7); \ |
|
} |
|
|
|
#define GS(a,b,c,d,x,y) { \ |
|
v[a] += (m[x] ^ z[y]) + v[b]; \ |
|
v[d] = __byte_perm(v[d] ^ v[a],0, 0x1032); \ |
|
v[c] += v[d]; \ |
|
v[b] = ROTR32(v[b] ^ v[c], 12); \ |
|
v[a] += (m[y] ^ z[x]) + v[b]; \ |
|
v[d] = __byte_perm(v[d] ^ v[a],0, 0x0321); \ |
|
v[c] += v[d]; \ |
|
v[b] = ROTR32(v[b] ^ v[c], 7); \ |
|
} |
|
|
|
__global__ __launch_bounds__(TPB,1) |
|
void vanilla_gpu_hash_16_8(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce,const uint64_t highTarget){ |
|
uint32_t _ALIGN(16) v[16]; |
|
uint32_t _ALIGN(16) tmp[16]; |
|
|
|
const size_t thread = blockDim.x * blockIdx.x + threadIdx.x; |
|
const uint64_t step = gridDim.x * blockDim.x; |
|
const uint64_t maxNonce = startNonce + threads; |
|
|
|
const int8_t r[][16] = { |
|
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, |
|
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, |
|
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, |
|
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } |
|
}; |
|
const uint32_t z[16] = { |
|
0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344, 0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89, |
|
0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C, 0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917 |
|
}; |
|
|
|
//PREFETCH |
|
#pragma unroll |
|
for(int i=0;i<16;i++){ |
|
tmp[ i] = d_data[ i]; |
|
} |
|
|
|
uint32_t m[16] = { |
|
d_data[16], d_data[17], d_data[18], 0, |
|
0x80000000UL, 0, 0, 0, |
|
0, 0, 0, 0, |
|
0, 1, 0, 640 |
|
}; |
|
|
|
const uint32_t h7 = d_data[19]; |
|
const uint32_t h6 = d_data[20]; |
|
//END OF PREFETCH |
|
uint64_t m3 = startNonce + thread; |
|
loopstart: |
|
if(m3>=maxNonce)return; |
|
m[3] = m3; |
|
|
|
#pragma unroll |
|
for(int i=0;i<16;i++) |
|
v[ i] = tmp[ i]; |
|
|
|
v[ 1]+= m[3] ^ z[2]; |
|
v[13] = __byte_perm(v[13] ^ v[1],0, 0x0321); |
|
v[ 9]+= v[13]; |
|
v[ 5] = ROTR32(v[5] ^ v[9], 7); |
|
v[ 0]+= v[5]; |
|
v[15] = __byte_perm(v[15] ^ v[0],0, 0x1032); |
|
|
|
v[10]+= v[15]; |
|
v[ 5] = ROTR32(v[5] ^ v[10], 12); |
|
v[ 0]+= z[8] + v[5]; |
|
v[15] = __byte_perm(v[15] ^ v[0],0, 0x0321); |
|
v[10]+= v[15]; |
|
v[ 5] = ROTR32(v[5] ^ v[10], 7); |
|
|
|
GS3( 1, 6,11,12,10,11, 2, 7, 8,13,12,13, 3, 4, 9,14,14,15); |
|
|
|
#pragma unroll |
|
for(int i=0;i<6;i++){ |
|
GS4(0, 4, 8,12,r[i][ 0],r[i][ 1], 1, 5, 9,13,r[i][ 2],r[i][ 3], 2, 6,10,14,r[i][ 4],r[i][ 5], 3, 7,11,15,r[i][ 6],r[i][ 7]); |
|
GS4(0, 5,10,15,r[i][ 8],r[i][ 9], 1, 6,11,12,r[i][10],r[i][11], 2, 7, 8,13,r[i][12],r[i][13], 3, 4, 9,14,r[i][14],r[i][15]); |
|
} |
|
GS4(0, 4, 8,12,r[6][ 0],r[6][ 1], 1, 5, 9,13,r[6][ 2],r[6][ 3], 2, 6,10,14,r[6][ 4],r[6][ 5], 3, 7,11,15,r[6][ 6],r[6][ 7]); |
|
|
|
v[ 0] += (m[ 5] ^ z[0]) + v[5]; |
|
v[ 2] += (m[ 8] ^ z[6]) + v[7]; |
|
v[13] = __byte_perm(v[13] ^ v[2],0, 0x1032); |
|
v[15] = __byte_perm(v[15] ^ v[0],0, 0x1032); |
|
|
|
v[ 8] += v[13]; |
|
v[10] += v[15]; |
|
|
|
v[ 5] = ROTR32(v[ 5] ^ v[10], 12); |
|
v[ 7] = ROTR32(v[ 7] ^ v[ 8], 12); |
|
|
|
v[ 0] += (m[ 0] ^ z[5]) + v[5]; |
|
v[ 2] += (m[ 6] ^ z[8]) + v[7]; |
|
|
|
v[15] = __byte_perm(v[15] ^ v[ 0],0, 0x0321); |
|
v[13] = __byte_perm(v[13] ^ v[ 2],0, 0x0321); |
|
|
|
v[8] += v[13]; |
|
v[7] = ROTR32(v[7] ^ v[8], 7); |
|
|
|
// only compute h6 & 7 |
|
if((v[15]^h7)==v[7]){ |
|
v[ 1] += (m[15] ^ z[ 4]) + v[6]; |
|
v[ 3] += (m[2] ^ z[10]) + v[4]; |
|
v[12] = __byte_perm(v[12] ^ v[ 1],0, 0x1032); |
|
v[14] = __byte_perm(v[14] ^ v[3],0, 0x1032); |
|
v[11] += v[12]; |
|
v[ 9] += v[14]; |
|
v[ 6] = ROTR32(v[ 6] ^ v[11], 12); |
|
|
|
v[ 1] += (m[ 4] ^ z[15]) + v[ 6]; |
|
v[ 3] += (m[10] ^ z[ 2]) + ROTR32(v[ 4] ^ v[ 9],12); |
|
v[12] = __byte_perm(v[12] ^ v[ 1],0, 0x0321); |
|
v[14] = __byte_perm(v[14] ^ v[ 3],0, 0x0321); |
|
|
|
v[11] += v[12]; |
|
v[ 6] = ROTR32(v[ 6] ^ v[11], 7); |
|
|
|
if(cuda_swab32(h6^v[6]^v[14]) <= highTarget) { |
|
#if NBN == 2 |
|
/* keep the smallest nonce, + extra one if found */ |
|
if (m[3] < resNonce[0]){ |
|
resNonce[1] = resNonce[0]; |
|
resNonce[0] = m[3]; |
|
} |
|
else |
|
resNonce[1] = m[3]; |
|
#else |
|
resNonce[0] = m[3]; |
|
#endif |
|
return; //<-- this may cause a problem on extranonce if the extranonce is on position current_nonce + X * step where X=[1,2,3..,N] |
|
} |
|
} |
|
m3+=step; |
|
goto loopstart; |
|
} |
|
|
|
__host__ |
|
void vanilla_cpu_setBlock_16(const int thr_id,const uint32_t* endiandata, uint32_t *penddata){ |
|
|
|
const uint32_t _ALIGN(64) z[16] = { |
|
SPH_C32(0x243F6A88), SPH_C32(0x85A308D3), SPH_C32(0x13198A2E), SPH_C32(0x03707344), |
|
SPH_C32(0xA4093822), SPH_C32(0x299F31D0), SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89), |
|
SPH_C32(0x452821E6), SPH_C32(0x38D01377), SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C), |
|
SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD), SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917) |
|
}; |
|
uint32_t _ALIGN(64) h[22]; |
|
|
|
sph_blake256_context ctx; |
|
|
|
sph_blake256_set_rounds(8); |
|
|
|
sph_blake256_init(&ctx); |
|
sph_blake256(&ctx, endiandata, 64); |
|
|
|
h[ 0] = ctx.H[0]; h[ 1] = ctx.H[1]; |
|
h[ 2] = ctx.H[2]; h[21] = ctx.H[3]; |
|
h[ 4] = ctx.H[4]; h[20] = ctx.H[5]; |
|
h[19] = ctx.H[6]; h[16] = ctx.H[7]; |
|
|
|
uint32_t tmp = h[20]; |
|
h[20] = h[19]; |
|
h[19] = h[16]; |
|
h[16] = penddata[ 0]; |
|
h[17] = penddata[ 1]; |
|
h[18] = penddata[ 2]; |
|
h[12] = z[ 4] ^ 640; |
|
h[ 8] = z[ 0]; |
|
|
|
h[ 0] += (h[16] ^ z[ 1]) + h[ 4]; |
|
h[12] = SPH_ROTR32(h[12] ^ h[0],16); |
|
h[ 8] += h[12]; |
|
h[ 4] = SPH_ROTR32(h[ 4] ^ h[ 8], 12); |
|
h[ 0] += (h[17] ^ z[ 0]) + h[ 4]; |
|
h[12] = SPH_ROTR32(h[12] ^ h[0],8); |
|
h[ 8] += h[12]; |
|
h[ 4] = SPH_ROTR32(h[ 4] ^ h[ 8], 7); |
|
|
|
h[1] += (h[18] ^ z[ 3]) + tmp; |
|
|
|
h[13] = SPH_ROTR32(z[ 5] ^ 640 ^ h[1],16); |
|
h[ 5] = ROTR32(tmp ^ (z[ 1] + h[13]), 12); |
|
|
|
h[ 1] += h[ 5]; |
|
h[ 2] += (0x80000000UL ^ z[ 5]) + h[20]; |
|
|
|
h[14] = SPH_ROTR32(z[ 6] ^ h[2], 16); |
|
h[ 6] = z[ 2] + h[14]; |
|
h[ 6] = SPH_ROTR32(h[20] ^ h[ 6], 12); |
|
|
|
h[21] += z[ 7] + h[19]; |
|
h[ 0] += z[ 9]; |
|
|
|
h[ 2] += z[ 4] + h[ 6]; |
|
|
|
h[ 9] = z[ 1] + h[13]; |
|
h[10] = z[ 2] + h[14]; |
|
|
|
h[14] = SPH_ROTR32(h[14] ^ h[2],8); //0x0321 |
|
h[10]+=h[14]; |
|
|
|
h[ 6] = SPH_ROTR32(h[ 6] ^ h[10],7); |
|
h[15] = SPH_ROTR32(z[ 7] ^ h[21],16); |
|
|
|
h[11] = z[ 3] + h[15]; |
|
h[ 7] = SPH_ROTR32(h[19] ^ h[11], 12); |
|
h[ 3] = h[21] + h[ 7] + z[ 6]; |
|
|
|
h[15] = SPH_ROTR32(h[15] ^ h[ 3],8); |
|
h[11]+= h[15]; |
|
h[ 7] = ROTR32(h[ 7] ^ h[11],7); |
|
|
|
cudaMemcpyToSymbolAsync(d_data, h, 21*sizeof(uint32_t), 0, cudaMemcpyHostToDevice, streams[thr_id]); |
|
} |
|
|
|
static bool init[MAX_GPUS] = { 0 }; |
|
|
|
extern "C" int scanhash_vanilla(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done, const int8_t blakerounds) |
|
{ |
|
uint32_t *pdata = work->data; |
|
uint32_t *ptarget = work->target; |
|
const uint32_t first_nonce = pdata[19]; |
|
const uint32_t targetHigh = ptarget[6]; |
|
int dev_id = device_map[thr_id]; |
|
|
|
int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 30 : 24; |
|
if (device_sm[dev_id] < 350) intensity = 22; |
|
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); |
|
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); |
|
|
|
if (!init[thr_id]) { |
|
cudaSetDevice(dev_id); |
|
if (opt_cudaschedule == -1 && gpu_threads == 1) { |
|
cudaDeviceReset(); |
|
// reduce cpu usage (linux) |
|
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); |
|
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); |
|
CUDA_LOG_ERROR(); |
|
} |
|
gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); |
|
|
|
cuda_get_arch(thr_id); |
|
|
|
CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t)), -1); |
|
CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t)), -1); |
|
cudaStreamCreate(&streams[thr_id]); |
|
init[thr_id] = true; |
|
} |
|
|
|
uint32_t _ALIGN(64) endiandata[20]; |
|
|
|
for (int k = 0; k < 16; k++) |
|
be32enc(&endiandata[k], pdata[k]); |
|
|
|
cudaMemsetAsync(d_resNonce[thr_id], 0xff, sizeof(uint32_t),streams[thr_id]); |
|
|
|
vanilla_cpu_setBlock_16(thr_id,endiandata,&pdata[16]); |
|
|
|
const dim3 grid((throughput + (NPT*TPB)-1)/(NPT*TPB)); |
|
const dim3 block(TPB); |
|
int rc = 0; |
|
|
|
do { |
|
vanilla_gpu_hash_16_8<<<grid,block, 0, streams[thr_id]>>>(throughput, pdata[19], d_resNonce[thr_id], targetHigh); |
|
cudaMemcpyAsync(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost,streams[thr_id]); |
|
*hashes_done = pdata[19] - first_nonce + throughput; |
|
cudaStreamSynchronize(streams[thr_id]); |
|
|
|
if (h_resNonce[thr_id][0] != UINT32_MAX){ |
|
uint32_t vhashcpu[8]; |
|
uint32_t Htarg = (uint32_t)targetHigh; |
|
|
|
for (int k=0; k < 19; k++) |
|
be32enc(&endiandata[k], pdata[k]); |
|
|
|
be32enc(&endiandata[19], h_resNonce[thr_id][0]); |
|
vanillahash(vhashcpu, endiandata, blakerounds); |
|
|
|
if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget)) { |
|
work->valid_nonces = 1; |
|
work->nonces[0] = h_resNonce[thr_id][0]; |
|
work_set_target_ratio(work, vhashcpu); |
|
#if NBN > 1 |
|
if (h_resNonce[thr_id][1] != UINT32_MAX) { |
|
work->nonces[1] = h_resNonce[thr_id][1]; |
|
be32enc(&endiandata[19], h_resNonce[thr_id][1]); |
|
vanillahash(vhashcpu, endiandata, blakerounds); |
|
if (bn_hash_target_ratio(vhashcpu, ptarget) > work->shareratio[0]) { |
|
work_set_target_ratio(work, vhashcpu); |
|
xchg(work->nonces[0], work->nonces[1]); |
|
} |
|
work->valid_nonces = 2; |
|
pdata[19] = max(work->nonces[0], work->nonces[1]) + 1; |
|
} else { |
|
pdata[19] = work->nonces[0] + 1; // cursor |
|
} |
|
#endif |
|
return work->valid_nonces; |
|
} |
|
else if (vhashcpu[6] > Htarg) { |
|
gpu_increment_reject(thr_id); |
|
if (!opt_quiet) |
|
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", h_resNonce[thr_id][0]); |
|
pdata[19] = work->nonces[0] + 1; |
|
continue; |
|
} |
|
} |
|
|
|
if ((uint64_t) throughput + pdata[19] >= max_nonce) { |
|
pdata[19] = max_nonce; |
|
break; |
|
} |
|
|
|
pdata[19] += throughput; |
|
|
|
} while (!work_restart[thr_id].restart); |
|
|
|
*hashes_done = pdata[19] - first_nonce; |
|
MyStreamSynchronize(NULL, 0, dev_id); |
|
return rc; |
|
} |
|
|
|
// cleanup |
|
extern "C" void free_vanilla(int thr_id) |
|
{ |
|
if (!init[thr_id]) |
|
return; |
|
|
|
cudaThreadSynchronize(); |
|
|
|
cudaFreeHost(h_resNonce[thr_id]); |
|
cudaFree(d_resNonce[thr_id]); |
|
|
|
init[thr_id] = false; |
|
|
|
cudaDeviceSynchronize(); |
|
}
|
|
|