mirror of
https://github.com/GOSTSec/ccminer
synced 2025-01-18 18:50:11 +00:00
5bf1f98200
X11+ algos and quark are not compatible for the moment but these ones are : Benchmark results for Gigabyte GTX 460 (SM 2.1 / 1 GB): blakecoin : 159090.5 kH/s, 1 MB, 1048576 thr. blake : 70208.9 kH/s, 1 MB, 1048576 thr. bmw : 122802.6 kH/s, 65 MB, 2097152 thr. deep : 3533.6 kH/s, 33 MB, 524288 thr. fugue256 : 43177.9 kH/s, 17 MB, 524288 thr. heavy : 4118.2 kH/s, 147 MB, 524032 thr. keccak : 18673.1 kH/s, 129 MB, 2097152 thr. luffa : 28816.0 kH/s, 257 MB, 4194304 thr. lyra2 : 213.7 kH/s, 570 MB, 65536 thr. mjollnir : 3895.6 kH/s, 147 MB, 524032 thr. nist5 : 1101.4 kH/s, 67 MB, 1048576 thr. penta : 501.6 kH/s, 21 MB, 327680 thr. skein : 5432.4 kH/s, 65 MB, 1048576 thr. skein2 : 6788.9 kH/s, 33 MB, 524288 thr. whirlpool : 688.5 kH/s, 33 MB, 524288 thr. zr5 : 122.5 kH/s, 86 MB, 262144 thr.
248 lines
6.1 KiB
Plaintext
248 lines
6.1 KiB
Plaintext
/**
|
|
* Blake-256 Cuda Kernel (Tested on SM 5.0)
|
|
*
|
|
* Tanguy Pruvot - Nov. 2014
|
|
*/
|
|
extern "C" {
|
|
#include "sph/sph_blake.h"
|
|
}
|
|
|
|
#include "cuda_helper.h"
|
|
|
|
#include <memory.h>
|
|
|
|
static __device__ uint64_t cuda_swab32ll(uint64_t x) {
|
|
return MAKE_ULONGLONG(cuda_swab32(_LODWORD(x)), cuda_swab32(_HIDWORD(x)));
|
|
}
|
|
|
|
__constant__ static uint32_t c_data[3+1];
|
|
|
|
__constant__ static uint32_t sigma[16][16];
|
|
static uint32_t c_sigma[16][16] = {
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
|
|
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
|
|
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
|
|
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
|
|
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
|
|
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
|
|
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
|
|
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
|
|
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
|
|
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
|
|
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
|
|
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
|
|
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
|
|
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
|
|
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
|
|
};
|
|
|
|
static const uint32_t c_IV256[8] = {
|
|
0x6A09E667, 0xBB67AE85,
|
|
0x3C6EF372, 0xA54FF53A,
|
|
0x510E527F, 0x9B05688C,
|
|
0x1F83D9AB, 0x5BE0CD19
|
|
};
|
|
|
|
__device__ __constant__ static uint32_t cpu_h[8];
|
|
|
|
__device__ __constant__ static uint32_t u256[16];
|
|
static const uint32_t c_u256[16] = {
|
|
0x243F6A88, 0x85A308D3,
|
|
0x13198A2E, 0x03707344,
|
|
0xA4093822, 0x299F31D0,
|
|
0x082EFA98, 0xEC4E6C89,
|
|
0x452821E6, 0x38D01377,
|
|
0xBE5466CF, 0x34E90C6C,
|
|
0xC0AC29B7, 0xC97C50DD,
|
|
0x3F84D5B5, 0xB5470917
|
|
};
|
|
|
|
#define GS2(a,b,c,d,x) { \
|
|
const uint32_t idx1 = sigma[r][x]; \
|
|
const uint32_t idx2 = sigma[r][x+1]; \
|
|
v[a] += (m[idx1] ^ u256[idx2]) + v[b]; \
|
|
v[d] = SPH_ROTL32(v[d] ^ v[a], 16); \
|
|
v[c] += v[d]; \
|
|
v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \
|
|
\
|
|
v[a] += (m[idx2] ^ u256[idx1]) + v[b]; \
|
|
v[d] = SPH_ROTR32(v[d] ^ v[a], 8); \
|
|
v[c] += v[d]; \
|
|
v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \
|
|
}
|
|
|
|
//#define ROTL32(x, n) ((x) << (n)) | ((x) >> (32 - (n)))
|
|
//#define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
|
|
#define hostGS(a,b,c,d,x) { \
|
|
const uint32_t idx1 = c_sigma[r][x]; \
|
|
const uint32_t idx2 = c_sigma[r][x+1]; \
|
|
v[a] += (m[idx1] ^ c_u256[idx2]) + v[b]; \
|
|
v[d] = ROTR32(v[d] ^ v[a], 16); \
|
|
v[c] += v[d]; \
|
|
v[b] = ROTR32(v[b] ^ v[c], 12); \
|
|
\
|
|
v[a] += (m[idx2] ^ c_u256[idx1]) + v[b]; \
|
|
v[d] = ROTR32(v[d] ^ v[a], 8); \
|
|
v[c] += v[d]; \
|
|
v[b] = ROTR32(v[b] ^ v[c], 7); \
|
|
}
|
|
|
|
/* Second part (64-80) msg never change, store it */
|
|
__device__ __constant__ static const uint32_t c_Padding[16] = {
|
|
0, 0, 0, 0,
|
|
0x80000000, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
0, 1, 0, 640,
|
|
};
|
|
|
|
__host__ __forceinline__
|
|
static void blake256_compress1st(uint32_t *h, const uint32_t *block, const uint32_t T0)
|
|
{
|
|
uint32_t m[16];
|
|
uint32_t v[16];
|
|
|
|
for (int i = 0; i < 16; i++) {
|
|
m[i] = block[i];
|
|
}
|
|
|
|
for (int i = 0; i < 8; i++)
|
|
v[i] = h[i];
|
|
|
|
v[8] = c_u256[0];
|
|
v[9] = c_u256[1];
|
|
v[10] = c_u256[2];
|
|
v[11] = c_u256[3];
|
|
|
|
v[12] = c_u256[4] ^ T0;
|
|
v[13] = c_u256[5] ^ T0;
|
|
v[14] = c_u256[6];
|
|
v[15] = c_u256[7];
|
|
|
|
for (int r = 0; r < 14; r++) {
|
|
/* column step */
|
|
hostGS(0, 4, 0x8, 0xC, 0x0);
|
|
hostGS(1, 5, 0x9, 0xD, 0x2);
|
|
hostGS(2, 6, 0xA, 0xE, 0x4);
|
|
hostGS(3, 7, 0xB, 0xF, 0x6);
|
|
/* diagonal step */
|
|
hostGS(0, 5, 0xA, 0xF, 0x8);
|
|
hostGS(1, 6, 0xB, 0xC, 0xA);
|
|
hostGS(2, 7, 0x8, 0xD, 0xC);
|
|
hostGS(3, 4, 0x9, 0xE, 0xE);
|
|
}
|
|
|
|
for (int i = 0; i < 16; i++) {
|
|
int j = i & 7;
|
|
h[j] ^= v[i];
|
|
}
|
|
}
|
|
|
|
__device__ __forceinline__
|
|
static void blake256_compress2nd(uint32_t *h, const uint32_t *block, const uint32_t T0)
|
|
{
|
|
uint32_t m[16];
|
|
uint32_t v[16];
|
|
|
|
m[0] = block[0];
|
|
m[1] = block[1];
|
|
m[2] = block[2];
|
|
m[3] = block[3];
|
|
|
|
#pragma unroll
|
|
for (int i = 4; i < 16; i++) {
|
|
m[i] = c_Padding[i];
|
|
}
|
|
|
|
#pragma unroll 8
|
|
for (int i = 0; i < 8; i++)
|
|
v[i] = h[i];
|
|
|
|
v[8] = u256[0];
|
|
v[9] = u256[1];
|
|
v[10] = u256[2];
|
|
v[11] = u256[3];
|
|
|
|
v[12] = u256[4] ^ T0;
|
|
v[13] = u256[5] ^ T0;
|
|
v[14] = u256[6];
|
|
v[15] = u256[7];
|
|
|
|
#pragma unroll 14
|
|
for (int r = 0; r < 14; r++) {
|
|
/* column step */
|
|
GS2(0, 4, 0x8, 0xC, 0x0);
|
|
GS2(1, 5, 0x9, 0xD, 0x2);
|
|
GS2(2, 6, 0xA, 0xE, 0x4);
|
|
GS2(3, 7, 0xB, 0xF, 0x6);
|
|
/* diagonal step */
|
|
GS2(0, 5, 0xA, 0xF, 0x8);
|
|
GS2(1, 6, 0xB, 0xC, 0xA);
|
|
GS2(2, 7, 0x8, 0xD, 0xC);
|
|
GS2(3, 4, 0x9, 0xE, 0xE);
|
|
}
|
|
|
|
#pragma unroll 16
|
|
for (int i = 0; i < 16; i++) {
|
|
int j = i & 7;
|
|
h[j] ^= v[i];
|
|
}
|
|
}
|
|
|
|
__global__ __launch_bounds__(256,3)
|
|
void blake256_gpu_hash_80(const uint32_t threads, const uint32_t startNonce, uint64_t * Hash)
|
|
{
|
|
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
|
if (thread < threads)
|
|
{
|
|
uint32_t h[8];
|
|
uint32_t input[4];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < 8; i++) h[i] = cpu_h[i];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < 3; ++i) input[i] = c_data[i];
|
|
|
|
input[3] = startNonce + thread;
|
|
blake256_compress2nd(h, input, 640);
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i<4; i++) {
|
|
Hash[i*threads + thread] = cuda_swab32ll(MAKE_ULONGLONG(h[2 * i], h[2*i+1]));
|
|
}
|
|
}
|
|
}
|
|
|
|
__host__
|
|
void blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order)
|
|
{
|
|
const uint32_t threadsperblock = 256;
|
|
|
|
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
|
|
dim3 block(threadsperblock);
|
|
|
|
blake256_gpu_hash_80 <<<grid, block>>> (threads, startNonce, Hash);
|
|
MyStreamSynchronize(NULL, order, thr_id);
|
|
}
|
|
|
|
__host__
|
|
void blake256_cpu_setBlock_80(uint32_t *pdata)
|
|
{
|
|
uint32_t h[8], data[20];
|
|
|
|
memcpy(data, pdata, 80);
|
|
memcpy(h, c_IV256, sizeof(c_IV256));
|
|
blake256_compress1st(h, pdata, 512);
|
|
|
|
cudaMemcpyToSymbol(cpu_h, h, sizeof(h), 0, cudaMemcpyHostToDevice);
|
|
cudaMemcpyToSymbol(c_data, &data[16], sizeof(c_data), 0, cudaMemcpyHostToDevice);
|
|
}
|
|
|
|
__host__
|
|
void blake256_cpu_init(int thr_id, uint32_t threads)
|
|
{
|
|
cudaMemcpyToSymbol(u256, c_u256, sizeof(c_u256), 0, cudaMemcpyHostToDevice);
|
|
cudaMemcpyToSymbol(sigma, c_sigma, sizeof(c_sigma), 0, cudaMemcpyHostToDevice);
|
|
}
|