1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-15 01:00:19 +00:00
ccminer/x11/cuda_x11_luffa512_Cubehash.cu
Tanguy Pruvot 9f5744d4c0 luffa/cube: fine tuning of maxregcount for the 750Ti
This allow to get 69 regs used (tested on linux) 69 or 72 make
the compiler to use 64 regs which is not enough on the 750Ti
for optimal performance...
2015-06-17 03:58:31 +02:00

834 lines
17 KiB
Plaintext

/*
* Merged LUFFA512 64 + CUBE512 64 - from sp
*/
#include "cuda_helper.h"
#define MULT0(a) {\
tmp = a[7]; \
a[7] = a[6]; \
a[6] = a[5]; \
a[5] = a[4]; \
a[4] = a[3] ^ tmp; \
a[3] = a[2] ^ tmp; \
a[2] = a[1]; \
a[1] = a[0] ^ tmp; \
a[0] = tmp; \
}
#define MULT2(a,j) { \
tmp = a[(j<<3)+7]; \
a[(j*8)+7] = a[(j*8)+6]; \
a[(j*8)+6] = a[(j*8)+5]; \
a[(j*8)+5] = a[(j*8)+4]; \
a[(j*8)+4] = a[(j*8)+3] ^ tmp; \
a[(j*8)+3] = a[(j*8)+2] ^ tmp; \
a[(j*8)+2] = a[(j*8)+1]; \
a[(j*8)+1] = a[(j*8)+0] ^ tmp; \
a[j*8] = tmp; \
}
#define TWEAK(a0,a1,a2,a3,j) { \
a0 = ROTL32(a0,j); \
a1 = ROTL32(a1,j); \
a2 = ROTL32(a2,j); \
a3 = ROTL32(a3,j); \
}
#define STEP(c0,c1) { \
SUBCRUMB(chainv[0],chainv[1],chainv[2],chainv[3],tmp); \
SUBCRUMB(chainv[5],chainv[6],chainv[7],chainv[4],tmp); \
MIXWORD(chainv[0],chainv[4]); \
MIXWORD(chainv[1],chainv[5]); \
MIXWORD(chainv[2],chainv[6]); \
MIXWORD(chainv[3],chainv[7]); \
ADD_CONSTANT(chainv[0],chainv[4],c0,c1); \
}
#define SUBCRUMB(a0,a1,a2,a3,a4) { \
a4 = a0; \
a0 |= a1; \
a2 ^= a3; \
a1 = ~a1;\
a0 ^= a3; \
a3 &= a4; \
a1 ^= a3; \
a3 ^= a2; \
a2 &= a0; \
a0 = ~a0;\
a2 ^= a1; \
a1 |= a3; \
a4 ^= a1; \
a3 ^= a2; \
a2 &= a1; \
a1 ^= a0; \
a0 = a4; \
}
#define MIXWORD(a0,a4) { \
a4 ^= a0; \
a0 = ROTL32(a0,2); \
a0 ^= a4; \
a4 = ROTL32(a4,14); \
a4 ^= a0; \
a0 = ROTL32(a0,10); \
a0 ^= a4; \
a4 = ROTL32(a4,1); \
}
#define ADD_CONSTANT(a0,b0,c0,c1) { \
a0 ^= c0; \
b0 ^= c1; \
}
__device__ __constant__ uint32_t c_CNS[80] = {
0x303994a6,0xe0337818,0xc0e65299,0x441ba90d,
0x6cc33a12,0x7f34d442,0xdc56983e,0x9389217f,
0x1e00108f,0xe5a8bce6,0x7800423d,0x5274baf4,
0x8f5b7882,0x26889ba7,0x96e1db12,0x9a226e9d,
0xb6de10ed,0x01685f3d,0x70f47aae,0x05a17cf4,
0x0707a3d4,0xbd09caca,0x1c1e8f51,0xf4272b28,
0x707a3d45,0x144ae5cc,0xaeb28562,0xfaa7ae2b,
0xbaca1589,0x2e48f1c1,0x40a46f3e,0xb923c704,
0xfc20d9d2,0xe25e72c1,0x34552e25,0xe623bb72,
0x7ad8818f,0x5c58a4a4,0x8438764a,0x1e38e2e7,
0xbb6de032,0x78e38b9d,0xedb780c8,0x27586719,
0xd9847356,0x36eda57f,0xa2c78434,0x703aace7,
0xb213afa5,0xe028c9bf,0xc84ebe95,0x44756f91,
0x4e608a22,0x7e8fce32,0x56d858fe,0x956548be,
0x343b138f,0xfe191be2,0xd0ec4e3d,0x3cb226e5,
0x2ceb4882,0x5944a28e,0xb3ad2208,0xa1c4c355,
0xf0d2e9e3,0x5090d577,0xac11d7fa,0x2d1925ab,
0x1bcb66f2,0xb46496ac,0x6f2d9bc9,0xd1925ab0,
0x78602649,0x29131ab6,0x8edae952,0x0fc053c3,
0x3b6ba548,0x3f014f0c,0xedae9520,0xfc053c31
};
// Precalculated chaining values
__device__ __constant__ uint32_t c_IV[40] = {
0x8bb0a761, 0xc2e4aa8b, 0x2d539bc9, 0x381408f8,
0x478f6633, 0x255a46ff, 0x581c37f7, 0x601c2e8e,
0x266c5f9d, 0xc34715d8, 0x8900670e, 0x51a540be,
0xe4ce69fb, 0x5089f4d4, 0x3cc0a506, 0x609bcb02,
0xa4e3cd82, 0xd24fd6ca, 0xc0f196dc, 0xcf41eafe,
0x0ff2e673, 0x303804f2, 0xa7b3cd48, 0x677addd4,
0x66e66a8a, 0x2303208f, 0x486dafb4, 0xc0d37dc6,
0x634d15af, 0xe5af6747, 0x10af7e38, 0xee7e6428,
0x01262e5d, 0xc92c2e64, 0x82fee966, 0xcea738d3,
0x867de2b0, 0xe0714818, 0xda6e831f, 0xa7062529
};
/***************************************************/
__device__ __forceinline__
static void rnd512(uint32_t *statebuffer, uint32_t *statechainv)
{
uint32_t t[40];
uint32_t chainv[8];
uint32_t tmp;
int i,j;
#pragma unroll
for(i=0;i<8;i++) {
t[i] = 0;
#pragma unroll 5
for(j=0;j<5;j++)
t[i] ^= statechainv[i+8*j];
}
MULT0(t);
#pragma unroll
for(j=0;j<5;j++) {
#pragma unroll
for(i=0;i<8;i++)
statechainv[i+8*j] ^= t[i];
}
#pragma unroll
for(j=0;j<5;j++) {
#pragma unroll
for(i=0;i<8;i++)
t[i+8*j] = statechainv[i+8*j];
}
MULT0(statechainv);
#pragma unroll 4
for(j=1;j<5;j++) {
MULT2(statechainv, j);
}
#pragma unroll
for(j=0;j<5;j++) {
#pragma unroll
for(i=0;i<8;i++)
statechainv[8*j+i] ^= t[8*((j+1)%5)+i];
}
#pragma unroll
for(j=0;j<5;j++) {
#pragma unroll
for(i=0;i<8;i++)
t[i+8*j] = statechainv[i+8*j];
}
MULT0(statechainv);
#pragma unroll 4
for(j=1;j<5;j++) {
MULT2(statechainv, j);
}
#pragma unroll
for(j=0;j<5;j++) {
#pragma unroll
for(i=0;i<8;i++)
statechainv[8*j+i] ^= t[8*((j+4)%5)+i];
}
#pragma unroll
for(j=0;j<5;j++) {
#pragma unroll 8
for(i=0;i<8;i++)
statechainv[i+8*j] ^= statebuffer[i];
MULT0(statebuffer);
}
#pragma unroll
for(i=0;i<8;i++) {
chainv[i] = statechainv[i];
}
#pragma unroll 1
for(i=0;i<8;i++) {
STEP(c_CNS[(2*i)],c_CNS[(2*i)+1]);
}
#pragma unroll
for(i=0;i<8;i++) {
statechainv[i] = chainv[i];
chainv[i] = statechainv[i+8];
}
TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],1);
#pragma unroll 1
for(i=0;i<8;i++) {
STEP(c_CNS[(2*i)+16],c_CNS[(2*i)+16+1]);
}
#pragma unroll
for(i=0;i<8;i++) {
statechainv[i+8] = chainv[i];
chainv[i] = statechainv[i+16];
}
TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],2);
#pragma unroll 1
for(i=0;i<8;i++) {
STEP(c_CNS[(2*i)+32],c_CNS[(2*i)+32+1]);
}
#pragma unroll
for(i=0;i<8;i++) {
statechainv[i+16] = chainv[i];
chainv[i] = statechainv[i+24];
}
TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],3);
#pragma unroll 1
for(i=0;i<8;i++) {
STEP(c_CNS[(2*i)+48],c_CNS[(2*i)+48+1]);
}
#pragma unroll
for(i=0;i<8;i++) {
statechainv[i+24] = chainv[i];
chainv[i] = statechainv[i+32];
}
TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],4);
#pragma unroll 1
for(i=0;i<8;i++) {
STEP(c_CNS[(2*i)+64],c_CNS[(2*i)+64+1]);
}
#pragma unroll
for(i=0;i<8;i++) {
statechainv[i+32] = chainv[i];
}
}
__device__ __forceinline__
static void rnd512_first(uint32_t state[40], uint32_t buffer[8])
{
uint32_t chainv[8];
uint32_t tmp;
int i, j;
for (j = 0; j<5; j++) {
state[8 * j] ^= buffer[0];
#pragma unroll 7
for (i = 1; i<8; i++)
state[i + 8 * j] ^= buffer[i];
MULT0(buffer);
}
#pragma unroll
for (i = 0; i<8; i++)
chainv[i] = state[i];
#pragma unroll 1
for (i = 0; i<8; i++) {
STEP(c_CNS[(2 * i)], c_CNS[(2 * i) + 1]);
}
#pragma unroll
for (i = 0; i<8; i++) {
state[i] = chainv[i];
chainv[i] = state[i + 8];
}
TWEAK(chainv[4], chainv[5], chainv[6], chainv[7], 1);
#pragma unroll 1
for (i = 0; i<8; i++) {
STEP(c_CNS[(2 * i) + 16], c_CNS[(2 * i) + 16 + 1]);
}
#pragma unroll
for (i = 0; i<8; i++) {
state[i + 8] = chainv[i];
chainv[i] = state[i + 16];
}
TWEAK(chainv[4], chainv[5], chainv[6], chainv[7], 2);
#pragma unroll 1
for (i = 0; i<8; i++) {
STEP(c_CNS[(2 * i) + 32], c_CNS[(2 * i) + 32 + 1]);
}
#pragma unroll
for (i = 0; i<8; i++) {
state[i + 16] = chainv[i];
chainv[i] = state[i + 24];
}
TWEAK(chainv[4], chainv[5], chainv[6], chainv[7], 3);
#pragma unroll 1
for (i = 0; i<8; i++) {
STEP(c_CNS[(2 * i) + 48], c_CNS[(2 * i) + 48 + 1]);
}
#pragma unroll
for (i = 0; i<8; i++) {
state[i + 24] = chainv[i];
chainv[i] = state[i + 32];
}
TWEAK(chainv[4], chainv[5], chainv[6], chainv[7], 4);
#pragma unroll 1
for (i = 0; i<8; i++) {
STEP(c_CNS[(2 * i) + 64], c_CNS[(2 * i) + 64 + 1]);
}
#pragma unroll
for (i = 0; i<8; i++)
state[i + 32] = chainv[i];
}
/***************************************************/
__device__ __forceinline__
static void rnd512_nullhash(uint32_t *state)
{
uint32_t t[40];
uint32_t chainv[8];
uint32_t tmp;
int i, j;
#pragma unroll
for (i = 0; i<8; i++) {
t[i] = state[i + 8 * 0];
#pragma unroll 4
for (j = 1; j<5; j++)
t[i] ^= state[i + 8 * j];
}
MULT0(t);
#pragma unroll
for (j = 0; j<5; j++) {
#pragma unroll
for (i = 0; i<8; i++)
state[i + 8 * j] ^= t[i];
}
#pragma unroll
for (j = 0; j<5; j++) {
#pragma unroll
for (i = 0; i<8; i++)
t[i + 8 * j] = state[i + 8 * j];
}
MULT0(state);
#pragma unroll 4
for(j=1; j<5; j++) {
MULT2(state, j);
}
#pragma unroll
for (j = 0; j<5; j++) {
#pragma unroll
for (i = 0; i<8; i++)
state[8 * j + i] ^= t[8 * ((j + 1) % 5) + i];
}
#pragma unroll
for (j = 0; j<5; j++) {
#pragma unroll 8
for (i = 0; i<8; i++)
t[i + 8 * j] = state[i + 8 * j];
}
MULT0(state);
#pragma unroll 4
for(j=1; j<5; j++) {
MULT2(state, j);
}
#pragma unroll
for (j = 0; j<5; j++) {
#pragma unroll
for (i = 0; i<8; i++)
state[8 * j + i] ^= t[8 * ((j + 4) % 5) + i];
}
#pragma unroll
for (i = 0; i<8; i++)
chainv[i] = state[i];
#pragma unroll 1
for (i = 0; i<8; i++) {
STEP(c_CNS[(2 * i)], c_CNS[(2 * i) + 1]);
}
#pragma unroll
for (i = 0; i<8; i++) {
state[i] = chainv[i];
chainv[i] = state[i + 8];
}
TWEAK(chainv[4], chainv[5], chainv[6], chainv[7], 1);
#pragma unroll 1
for (i = 0; i<8; i++) {
STEP(c_CNS[(2 * i) + 16], c_CNS[(2 * i) + 16 + 1]);
}
#pragma unroll
for (i = 0; i<8; i++) {
state[i + 8] = chainv[i];
chainv[i] = state[i + 16];
}
TWEAK(chainv[4], chainv[5], chainv[6], chainv[7], 2);
#pragma unroll 1
for (i = 0; i<8; i++) {
STEP(c_CNS[(2 * i) + 32], c_CNS[(2 * i) + 32 + 1]);
}
#pragma unroll
for (i = 0; i<8; i++) {
state[i + 16] = chainv[i];
chainv[i] = state[i + 24];
}
TWEAK(chainv[4], chainv[5], chainv[6], chainv[7], 3);
#pragma unroll 1
for (i = 0; i<8; i++) {
STEP(c_CNS[(2 * i) + 48], c_CNS[(2 * i) + 48 + 1]);
}
#pragma unroll
for (i = 0; i<8; i++) {
state[i + 24] = chainv[i];
chainv[i] = state[i + 32];
}
TWEAK(chainv[4], chainv[5], chainv[6], chainv[7], 4);
#pragma unroll 1
for (i = 0; i<8; i++) {
STEP(c_CNS[(2 * i) + 64], c_CNS[(2 * i) + 64 + 1]);
}
#pragma unroll
for (i = 0; i<8; i++) {
state[i + 32] = chainv[i];
}
}
__device__ __forceinline__
static void Update512(uint32_t *statebuffer, uint32_t *statechainv, const uint32_t *data)
{
#pragma unroll
for (int i = 0; i < 8; i++) statebuffer[i] = cuda_swab32(data[i]);
rnd512_first(statechainv, statebuffer);
#pragma unroll
for (int i = 0; i < 8; i++) statebuffer[i] = cuda_swab32(data[i + 8]);
rnd512(statebuffer, statechainv);
}
/***************************************************/
__device__ __forceinline__
static void finalization512(uint32_t *statebuffer, uint32_t *statechainv, uint32_t *b)
{
int i,j;
statebuffer[0] = 0x80000000;
#pragma unroll 7
for(int i=1;i<8;i++) statebuffer[i] = 0;
rnd512(statebuffer, statechainv);
/*---- blank round with m=0 ----*/
rnd512_nullhash(statechainv);
#pragma unroll
for(i=0;i<8;i++) {
b[i] = statechainv[i];
#pragma unroll 4
for(j=1;j<5;j++) {
b[i] ^= statechainv[i+8*j];
}
b[i] = cuda_swab32((b[i]));
}
rnd512_nullhash(statechainv);
#pragma unroll
for(i=0;i<8;i++) {
b[8 + i] = statechainv[i];
#pragma unroll 4
for(j=1;j<5;j++) {
b[8+i] ^= statechainv[i+8*j];
}
b[8 + i] = cuda_swab32((b[8 + i]));
}
}
#define ROUND_EVEN { \
xg = (x0 + xg); \
x0 = ROTL32(x0, 7); \
xh = (x1 + xh); \
x1 = ROTL32(x1, 7); \
xi = (x2 + xi); \
x2 = ROTL32(x2, 7); \
xj = (x3 + xj); \
x3 = ROTL32(x3, 7); \
xk = (x4 + xk); \
x4 = ROTL32(x4, 7); \
xl = (x5 + xl); \
x5 = ROTL32(x5, 7); \
xm = (x6 + xm); \
x6 = ROTL32(x6, 7); \
xn = (x7 + xn); \
x7 = ROTL32(x7, 7); \
xo = (x8 + xo); \
x8 = ROTL32(x8, 7); \
xp = (x9 + xp); \
x9 = ROTL32(x9, 7); \
xq = (xa + xq); \
xa = ROTL32(xa, 7); \
xr = (xb + xr); \
xb = ROTL32(xb, 7); \
xs = (xc + xs); \
xc = ROTL32(xc, 7); \
xt = (xd + xt); \
xd = ROTL32(xd, 7); \
xu = (xe + xu); \
xe = ROTL32(xe, 7); \
xv = (xf + xv); \
xf = ROTL32(xf, 7); \
x8 ^= xg; \
x9 ^= xh; \
xa ^= xi; \
xb ^= xj; \
xc ^= xk; \
xd ^= xl; \
xe ^= xm; \
xf ^= xn; \
x0 ^= xo; \
x1 ^= xp; \
x2 ^= xq; \
x3 ^= xr; \
x4 ^= xs; \
x5 ^= xt; \
x6 ^= xu; \
x7 ^= xv; \
xi = (x8 + xi); \
x8 = ROTL32(x8, 11); \
xj = (x9 + xj); \
x9 = ROTL32(x9, 11); \
xg = (xa + xg); \
xa = ROTL32(xa, 11); \
xh = (xb + xh); \
xb = ROTL32(xb, 11); \
xm = (xc + xm); \
xc = ROTL32(xc, 11); \
xn = (xd + xn); \
xd = ROTL32(xd, 11); \
xk = (xe + xk); \
xe = ROTL32(xe, 11); \
xl = (xf + xl); \
xf = ROTL32(xf, 11); \
xq = (x0 + xq); \
x0 = ROTL32(x0, 11); \
xr = (x1 + xr); \
x1 = ROTL32(x1, 11); \
xo = (x2 + xo); \
x2 = ROTL32(x2, 11); \
xp = (x3 + xp); \
x3 = ROTL32(x3, 11); \
xu = (x4 + xu); \
x4 = ROTL32(x4, 11); \
xv = (x5 + xv); \
x5 = ROTL32(x5, 11); \
xs = (x6 + xs); \
x6 = ROTL32(x6, 11); \
xt = (x7 + xt); \
x7 = ROTL32(x7, 11); \
xc ^= xi; \
xd ^= xj; \
xe ^= xg; \
xf ^= xh; \
x8 ^= xm; \
x9 ^= xn; \
xa ^= xk; \
xb ^= xl; \
x4 ^= xq; \
x5 ^= xr; \
x6 ^= xo; \
x7 ^= xp; \
x0 ^= xu; \
x1 ^= xv; \
x2 ^= xs; \
x3 ^= xt; \
}
#define ROUND_ODD { \
xj = (xc + xj); \
xc = ROTL32(xc, 7); \
xi = (xd + xi); \
xd = ROTL32(xd, 7); \
xh = (xe + xh); \
xe = ROTL32(xe, 7); \
xg = (xf + xg); \
xf = ROTL32(xf, 7); \
xn = (x8 + xn); \
x8 = ROTL32(x8, 7); \
xm = (x9 + xm); \
x9 = ROTL32(x9, 7); \
xl = (xa + xl); \
xa = ROTL32(xa, 7); \
xk = (xb + xk); \
xb = ROTL32(xb, 7); \
xr = (x4 + xr); \
x4 = ROTL32(x4, 7); \
xq = (x5 + xq); \
x5 = ROTL32(x5, 7); \
xp = (x6 + xp); \
x6 = ROTL32(x6, 7); \
xo = (x7 + xo); \
x7 = ROTL32(x7, 7); \
xv = (x0 + xv); \
x0 = ROTL32(x0, 7); \
xu = (x1 + xu); \
x1 = ROTL32(x1, 7); \
xt = (x2 + xt); \
x2 = ROTL32(x2, 7); \
xs = (x3 + xs); \
x3 = ROTL32(x3, 7); \
x4 ^= xj; \
x5 ^= xi; \
x6 ^= xh; \
x7 ^= xg; \
x0 ^= xn; \
x1 ^= xm; \
x2 ^= xl; \
x3 ^= xk; \
xc ^= xr; \
xd ^= xq; \
xe ^= xp; \
xf ^= xo; \
x8 ^= xv; \
x9 ^= xu; \
xa ^= xt; \
xb ^= xs; \
xh = (x4 + xh); \
x4 = ROTL32(x4, 11); \
xg = (x5 + xg); \
x5 = ROTL32(x5, 11); \
xj = (x6 + xj); \
x6 = ROTL32(x6, 11); \
xi = (x7 + xi); \
x7 = ROTL32(x7, 11); \
xl = (x0 + xl); \
x0 = ROTL32(x0, 11); \
xk = (x1 + xk); \
x1 = ROTL32(x1, 11); \
xn = (x2 + xn); \
x2 = ROTL32(x2, 11); \
xm = (x3 + xm); \
x3 = ROTL32(x3, 11); \
xp = (xc + xp); \
xc = ROTL32(xc, 11); \
xo = (xd + xo); \
xd = ROTL32(xd, 11); \
xr = (xe + xr); \
xe = ROTL32(xe, 11); \
xq = (xf + xq); \
xf = ROTL32(xf, 11); \
xt = (x8 + xt); \
x8 = ROTL32(x8, 11); \
xs = (x9 + xs); \
x9 = ROTL32(x9, 11); \
xv = (xa + xv); \
xa = ROTL32(xa, 11); \
xu = (xb + xu); \
xb = ROTL32(xb, 11); \
x0 ^= xh; \
x1 ^= xg; \
x2 ^= xj; \
x3 ^= xi; \
x4 ^= xl; \
x5 ^= xk; \
x6 ^= xn; \
x7 ^= xm; \
x8 ^= xp; \
x9 ^= xo; \
xa ^= xr; \
xb ^= xq; \
xc ^= xt; \
xd ^= xs; \
xe ^= xv; \
xf ^= xu; \
}
#define SIXTEEN_ROUNDS \
for (int j = 0; j < 8; j ++) { \
ROUND_EVEN; \
ROUND_ODD; \
}
__global__
#if __CUDA_ARCH__ > 500
__launch_bounds__(256, 4)
#endif
void x11_luffaCubehash512_gpu_hash_64(uint32_t threads, uint32_t *g_hash)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t statechainv[40] = {
0x8bb0a761, 0xc2e4aa8b, 0x2d539bc9, 0x381408f8,
0x478f6633, 0x255a46ff, 0x581c37f7, 0x601c2e8e,
0x266c5f9d, 0xc34715d8, 0x8900670e, 0x51a540be,
0xe4ce69fb, 0x5089f4d4, 0x3cc0a506, 0x609bcb02,
0xa4e3cd82, 0xd24fd6ca, 0xc0f196dc, 0xcf41eafe,
0x0ff2e673, 0x303804f2, 0xa7b3cd48, 0x677addd4,
0x66e66a8a, 0x2303208f, 0x486dafb4, 0xc0d37dc6,
0x634d15af, 0xe5af6747, 0x10af7e38, 0xee7e6428,
0x01262e5d, 0xc92c2e64, 0x82fee966, 0xcea738d3,
0x867de2b0, 0xe0714818, 0xda6e831f, 0xa7062529
};
uint32_t statebuffer[8];
uint32_t *const Hash = &g_hash[thread * 16U];
Update512(statebuffer, statechainv, Hash);
finalization512(statebuffer, statechainv, Hash);
//Cubehash
uint32_t x0 = 0x2AEA2A61, x1 = 0x50F494D4, x2 = 0x2D538B8B, x3 = 0x4167D83E;
uint32_t x4 = 0x3FEE2313, x5 = 0xC701CF8C, x6 = 0xCC39968E, x7 = 0x50AC5695;
uint32_t x8 = 0x4D42C787, x9 = 0xA647A8B3, xa = 0x97CF0BEF, xb = 0x825B4537;
uint32_t xc = 0xEEF864D2, xd = 0xF22090C4, xe = 0xD0E5CD33, xf = 0xA23911AE;
uint32_t xg = 0xFCD398D9, xh = 0x148FE485, xi = 0x1B017BEF, xj = 0xB6444532;
uint32_t xk = 0x6A536159, xl = 0x2FF5781C, xm = 0x91FA7934, xn = 0x0DBADEA9;
uint32_t xo = 0xD65C8A2B, xp = 0xA5A70E75, xq = 0xB1C62456, xr = 0xBC796576;
uint32_t xs = 0x1921C8F7, xt = 0xE7989AF1, xu = 0x7795D246, xv = 0xD43E3B44;
x0 ^= Hash[0];
x1 ^= Hash[1];
x2 ^= Hash[2];
x3 ^= Hash[3];
x4 ^= Hash[4];
x5 ^= Hash[5];
x6 ^= Hash[6];
x7 ^= Hash[7];
SIXTEEN_ROUNDS;
x0 ^= Hash[8];
x1 ^= Hash[9];
x2 ^= Hash[10];
x3 ^= Hash[11];
x4 ^= Hash[12];
x5 ^= Hash[13];
x6 ^= Hash[14];
x7 ^= Hash[15];
SIXTEEN_ROUNDS;
x0 ^= 0x80;
SIXTEEN_ROUNDS;
xv ^= 1;
for (int i = 3; i < 13; i++) {
SIXTEEN_ROUNDS;
}
Hash[0] = x0;
Hash[1] = x1;
Hash[2] = x2;
Hash[3] = x3;
Hash[4] = x4;
Hash[5] = x5;
Hash[6] = x6;
Hash[7] = x7;
Hash[8] = x8;
Hash[9] = x9;
Hash[10] = xa;
Hash[11] = xb;
Hash[12] = xc;
Hash[13] = xd;
Hash[14] = xe;
Hash[15] = xf;
}
}
__host__
void x11_luffaCubehash512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t *d_hash, int order)
{
const uint32_t threadsperblock = 256;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
x11_luffaCubehash512_gpu_hash_64 <<<grid, block>>> (threads, d_hash);
MyStreamSynchronize(NULL, order, thr_id);
}
// Setup
__host__
void x11_luffaCubehash512_cpu_init(int thr_id, uint32_t threads) {}