GOSTcoin support for ccminer CUDA miner project, compatible with most nvidia cards
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

489 lines
15 KiB

#include <cuda.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
#include <memory.h>
#include <string.h>
#include <map>
#include <openssl/sha.h>
#ifndef _WIN32
#include <unistd.h>
#endif
// include thrust
#include <thrust/version.h>
#include <thrust/remove.h>
#include <thrust/device_vector.h>
#include <thrust/iterator/constant_iterator.h>
#include "miner.h"
#include "hefty1.h"
#include "sph/sph_keccak.h"
#include "sph/sph_blake.h"
#include "sph/sph_groestl.h"
#include "heavy/cuda_hefty1.h"
#include "heavy/cuda_sha256.h"
#include "heavy/cuda_keccak512.h"
#include "heavy/cuda_groestl512.h"
#include "heavy/cuda_blake512.h"
#include "heavy/cuda_combine.h"
extern uint32_t *d_hash2output[8];
extern uint32_t *d_hash3output[8];
extern uint32_t *d_hash4output[8];
extern uint32_t *d_hash5output[8];
#define HEAVYCOIN_BLKHDR_SZ 84
#define MNR_BLKHDR_SZ 80
// nonce-array für die threads
uint32_t *d_nonceVector[8];
/* Combines top 64-bits from each hash into a single hash */
static void combine_hashes(uint32_t *out, const uint32_t *hash1, const uint32_t *hash2, const uint32_t *hash3, const uint32_t *hash4)
{
const uint32_t *hash[4] = { hash1, hash2, hash3, hash4 };
int bits;
unsigned int i;
uint32_t mask;
unsigned int k;
/* Transpose first 64 bits of each hash into out */
memset(out, 0, 32);
bits = 0;
for (i = 7; i >= 6; i--) {
for (mask = 0x80000000; mask; mask >>= 1) {
for (k = 0; k < 4; k++) {
out[(255 - bits)/32] <<= 1;
if ((hash[k][i] & mask) != 0)
out[(255 - bits)/32] |= 1;
bits++;
}
}
}
}
#ifdef _MSC_VER
#include <intrin.h>
static uint32_t __inline bitsset( uint32_t x )
{
DWORD r = 0;
_BitScanReverse(&r, x);
return r;
}
#else
static uint32_t bitsset( uint32_t x )
{
return 31-__builtin_clz(x);
}
#endif
// Finde das high bit in einem Multiword-Integer.
static int findhighbit(const uint32_t *ptarget, int words)
{
int i;
int highbit = 0;
for (i=words-1; i >= 0; --i)
{
if (ptarget[i] != 0) {
highbit = i*32 + bitsset(ptarget[i])+1;
break;
}
}
return highbit;
}
// Generiere ein Multiword-Integer das die Zahl
// (2 << highbit) - 1 repräsentiert.
static void genmask(uint32_t *ptarget, int words, int highbit)
{
int i;
for (i=words-1; i >= 0; --i)
{
if ((i+1)*32 <= highbit)
ptarget[i] = 0xffffffff;
else if (i*32 > highbit)
ptarget[i] = 0x00000000;
else
ptarget[i] = (1 << (highbit-i*32)) - 1;
}
}
struct check_nonce_for_remove
{
check_nonce_for_remove(uint64_t target, uint32_t *hashes, uint32_t hashlen, uint32_t startNonce) :
m_target(target),
m_hashes(hashes),
m_hashlen(hashlen),
m_startNonce(startNonce) { }
__device__
bool operator()(const uint32_t x)
{
// Position im Hash Buffer
uint32_t hashIndex = x - m_startNonce;
// Wert des Hashes (als uint64_t) auslesen.
// Steht im 6. und 7. Wort des Hashes (jeder dieser Hashes hat 512 Bits)
uint64_t hashValue = *((uint64_t*)(&m_hashes[m_hashlen*hashIndex + 6]));
// gegen das Target prüfen. Es dürfen nur Bits aus dem Target gesetzt sein.
return (hashValue & m_target) != hashValue;
}
uint64_t m_target;
uint32_t *m_hashes;
uint32_t m_hashlen;
uint32_t m_startNonce;
};
// Zahl der CUDA Devices im System bestimmen
extern "C" int cuda_num_devices()
{
int version;
cudaError_t err = cudaDriverGetVersion(&version);
if (err != cudaSuccess)
{
applog(LOG_ERR, "Unable to query CUDA driver version! Is an nVidia driver installed?");
exit(1);
}
int maj = version / 1000, min = version % 100; // same as in deviceQuery sample
if (maj < 5 || (maj == 5 && min < 5))
{
applog(LOG_ERR, "Driver does not support CUDA %d.%d API! Update your nVidia driver!", 5, 5);
exit(1);
}
int GPU_N;
err = cudaGetDeviceCount(&GPU_N);
if (err != cudaSuccess)
{
applog(LOG_ERR, "Unable to query number of CUDA devices! Is an nVidia driver installed?");
exit(1);
}
return GPU_N;
}
// Gerätenamen holen
extern char *device_name[8];
extern int device_map[8];
extern "C" void cuda_devicenames()
{
cudaError_t err;
int GPU_N;
err = cudaGetDeviceCount(&GPU_N);
if (err != cudaSuccess)
{
applog(LOG_ERR, "Unable to query number of CUDA devices! Is an nVidia driver installed?");
exit(1);
}
for (int i=0; i < GPU_N; i++)
{
cudaDeviceProp props;
cudaGetDeviceProperties(&props, device_map[i]);
device_name[i] = strdup(props.name);
}
}
static bool substringsearch(const char *haystack, const char *needle, int &match)
{
int hlen = strlen(haystack);
int nlen = strlen(needle);
for (int i=0; i < hlen; ++i)
{
if (haystack[i] == ' ') continue;
int j=0, x = 0;
while(j < nlen)
{
if (haystack[i+x] == ' ') {++x; continue;}
if (needle[j] == ' ') {++j; continue;}
if (needle[j] == '#') return ++match == needle[j+1]-'0';
if (tolower(haystack[i+x]) != tolower(needle[j])) break;
++j; ++x;
}
if (j == nlen) return true;
}
return false;
}
// CUDA Gerät nach Namen finden (gibt Geräte-Index zurück oder -1)
extern "C" int cuda_finddevice(char *name)
{
int num = cuda_num_devices();
int match = 0;
for (int i=0; i < num; ++i)
{
cudaDeviceProp props;
if (cudaGetDeviceProperties(&props, i) == cudaSuccess)
if (substringsearch(props.name, name, match)) return i;
}
return -1;
}
// Zeitsynchronisations-Routine von cudaminer mit CPU sleep
typedef struct { double value[8]; } tsumarray;
cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id)
{
cudaError_t result = cudaSuccess;
if (situation >= 0)
{
static std::map<int, tsumarray> tsum;
double a = 0.95, b = 0.05;
if (tsum.find(situation) == tsum.end()) { a = 0.5; b = 0.5; } // faster initial convergence
double tsync = 0.0;
double tsleep = 0.95 * tsum[situation].value[thr_id];
if (cudaStreamQuery(stream) == cudaErrorNotReady)
{
usleep((useconds_t)(1e6*tsleep));
struct timeval tv_start, tv_end;
gettimeofday(&tv_start, NULL);
result = cudaStreamSynchronize(stream);
gettimeofday(&tv_end, NULL);
tsync = 1e-6 * (tv_end.tv_usec-tv_start.tv_usec) + (tv_end.tv_sec-tv_start.tv_sec);
}
if (tsync >= 0) tsum[situation].value[thr_id] = a * tsum[situation].value[thr_id] + b * (tsleep+tsync);
}
else
result = cudaStreamSynchronize(stream);
return result;
}
int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done, uint32_t maxvote, int blocklen);
extern "C"
int scanhash_heavy(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done, uint32_t maxvote, int blocklen)
{
return scanhash_heavy_cpp(thr_id, pdata,
ptarget, max_nonce, hashes_done, maxvote, blocklen);
}
extern bool opt_benchmark;
int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done, uint32_t maxvote, int blocklen)
{
// CUDA will process thousands of threads.
const int throughput = 4096 * 128;
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x000000ff;
int rc = 0;
uint32_t *hash = NULL;
cudaMallocHost(&hash, throughput*8*sizeof(uint32_t));
uint32_t *cpu_nonceVector = NULL;
cudaMallocHost(&cpu_nonceVector, throughput*sizeof(uint32_t));
int nrmCalls[6];
memset(nrmCalls, 0, sizeof(int) * 6);
uint32_t start_nonce = pdata[19];
// für jeden Hash ein individuelles Target erstellen basierend
// auf dem höchsten Bit, das in ptarget gesetzt ist.
int highbit = findhighbit(ptarget, 8);
uint32_t target2[2], target3[2], target4[2], target5[2];
genmask(target2, 2, highbit/4+(((highbit%4)>3)?1:0) ); // SHA256
genmask(target3, 2, highbit/4+(((highbit%4)>2)?1:0) ); // keccak512
genmask(target4, 2, highbit/4+(((highbit%4)>1)?1:0) ); // groestl512
genmask(target5, 2, highbit/4+(((highbit%4)>0)?1:0) ); // blake512
static bool init[8] = {0,0,0,0,0,0,0,0};
if (!init[thr_id])
{
hefty_cpu_init(thr_id, throughput);
sha256_cpu_init(thr_id, throughput);
keccak512_cpu_init(thr_id, throughput);
groestl512_cpu_init(thr_id, throughput);
blake512_cpu_init(thr_id, throughput);
combine_cpu_init(thr_id, throughput);
init[thr_id] = true;
cudaMalloc(&d_nonceVector[thr_id], sizeof(uint32_t) * throughput);
}
if (blocklen == HEAVYCOIN_BLKHDR_SZ)
{
uint16_t *ext = (uint16_t *)&pdata[20];
if (opt_vote > maxvote) {
printf("Warning: Your block reward vote (%hu) exceeds "
"the maxvote reported by the pool (%hu).\n",
opt_vote, maxvote);
}
if (opt_trust_pool && opt_vote > maxvote) {
printf("Warning: Capping block reward vote to maxvote reported by pool.\n");
ext[0] = maxvote;
}
else
ext[0] = opt_vote;
}
// Setze die Blockdaten
hefty_cpu_setBlock(thr_id, throughput, pdata, blocklen);
sha256_cpu_setBlock(pdata, blocklen);
keccak512_cpu_setBlock(pdata, blocklen);
groestl512_cpu_setBlock(pdata, blocklen);
blake512_cpu_setBlock(pdata, blocklen);
do {
uint32_t i;
////// Compaction init
thrust::device_ptr<uint32_t> devNoncePtr(d_nonceVector[thr_id]);
thrust::device_ptr<uint32_t> devNoncePtrEnd((d_nonceVector[thr_id]) + throughput);
uint32_t actualNumberOfValuesInNonceVectorGPU = throughput;
hefty_cpu_hash(thr_id, throughput, pdata[19]);
//cudaThreadSynchronize();
sha256_cpu_hash(thr_id, throughput, pdata[19]);
//cudaThreadSynchronize();
// Hier ist die längste CPU Wartephase. Deshalb ein strategisches MyStreamSynchronize() hier.
MyStreamSynchronize(NULL, 1, thr_id);
////// Compaction
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*((uint64_t*)target2), d_hash2output[thr_id], 8, pdata[19]));
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
if(actualNumberOfValuesInNonceVectorGPU == 0)
goto emptyNonceVector;
keccak512_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19]);
//cudaThreadSynchronize();
////// Compaction
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*((uint64_t*)target3), d_hash3output[thr_id], 16, pdata[19]));
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
if(actualNumberOfValuesInNonceVectorGPU == 0)
goto emptyNonceVector;
blake512_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19]);
//cudaThreadSynchronize();
////// Compaction
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*((uint64_t*)target5), d_hash5output[thr_id], 16, pdata[19]));
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
if(actualNumberOfValuesInNonceVectorGPU == 0)
goto emptyNonceVector;
groestl512_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19]);
//cudaThreadSynchronize();
////// Compaction
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*((uint64_t*)target4), d_hash4output[thr_id], 16, pdata[19]));
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
if(actualNumberOfValuesInNonceVectorGPU == 0)
goto emptyNonceVector;
// combine
combine_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19], hash);
// Ergebnisse kopieren
if(actualNumberOfValuesInNonceVectorGPU > 0)
{
cudaMemcpy(cpu_nonceVector, d_nonceVector[thr_id], sizeof(uint32_t) * actualNumberOfValuesInNonceVectorGPU, cudaMemcpyDeviceToHost);
for (i=0; i<actualNumberOfValuesInNonceVectorGPU;++i)
{
uint32_t nonce = cpu_nonceVector[i];
//uint32_t index = nonce - pdata[19];
uint32_t index = i;
uint32_t *foundhash = &hash[8*index];
if (foundhash[7] <= ptarget[7]) {
if (fulltest(foundhash, ptarget)) {
uint32_t verification[8];
pdata[19] += nonce - pdata[19];
heavycoin_hash((unsigned char *)verification, (const unsigned char *)pdata, blocklen);
if (memcmp(verification, foundhash, 8*sizeof(uint32_t))) {
applog(LOG_ERR, "hash for nonce=$%08X does not validate on CPU!\n", nonce);
}
else
{
*hashes_done = pdata[19] - start_nonce;
rc = 1;
goto exit;
}
}
}
}
}
emptyNonceVector:
pdata[19] += throughput;
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart);
*hashes_done = pdata[19] - start_nonce;
exit:
cudaFreeHost(cpu_nonceVector);
cudaFreeHost(hash);
return rc;
}
void heavycoin_hash(unsigned char* output, const unsigned char* input, int len)
{
unsigned char hash1[32];
unsigned char hash2[32];
uint32_t hash3[16];
uint32_t hash4[16];
uint32_t hash5[16];
uint32_t *final;
SHA256_CTX ctx;
sph_keccak512_context keccakCtx;
sph_groestl512_context groestlCtx;
sph_blake512_context blakeCtx;
HEFTY1(input, len, hash1);
/* HEFTY1 is new, so take an extra security measure to eliminate
* the possiblity of collisions:
*
* Hash(x) = SHA256(x + HEFTY1(x))
*
* N.B. '+' is concatenation.
*/
SHA256_Init(&ctx);
SHA256_Update(&ctx, input, len);
SHA256_Update(&ctx, hash1, sizeof(hash1));
SHA256_Final(hash2, &ctx);
/* Additional security: Do not rely on a single cryptographic hash
* function. Instead, combine the outputs of 4 of the most secure
* cryptographic hash functions-- SHA256, KECCAK512, GROESTL512
* and BLAKE512.
*/
sph_keccak512_init(&keccakCtx);
sph_keccak512(&keccakCtx, input, len);
sph_keccak512(&keccakCtx, hash1, sizeof(hash1));
sph_keccak512_close(&keccakCtx, (void *)&hash3);
sph_groestl512_init(&groestlCtx);
sph_groestl512(&groestlCtx, input, len);
sph_groestl512(&groestlCtx, hash1, sizeof(hash1));
sph_groestl512_close(&groestlCtx, (void *)&hash4);
sph_blake512_init(&blakeCtx);
sph_blake512(&blakeCtx, input, len);
sph_blake512(&blakeCtx, (unsigned char *)&hash1, sizeof(hash1));
sph_blake512_close(&blakeCtx, (void *)&hash5);
final = (uint32_t *)output;
combine_hashes(final, (uint32_t *)hash2, hash3, hash4, hash5);
}