GOSTcoin support for ccminer CUDA miner project, compatible with most nvidia cards
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

285 lines
7.3 KiB

/**
* This code compares final hash against target
*/
#include <stdio.h>
#include <memory.h>
#include "miner.h"
#include "cuda_helper.h"
__constant__ uint32_t pTarget[8]; // 32 bytes
// store MAX_GPUS device arrays of 8 nonces
static uint32_t* h_resNonces[MAX_GPUS];
static uint32_t* d_resNonces[MAX_GPUS];
static bool init_done = false;
__host__
void cuda_check_cpu_init(int thr_id, uint32_t threads)
{
CUDA_CALL_OR_RET(cudaMallocHost(&h_resNonces[thr_id], 32));
CUDA_CALL_OR_RET(cudaMalloc(&d_resNonces[thr_id], 32));
init_done = true;
}
__host__
void cuda_check_cpu_free(int thr_id)
{
cudaFree(d_resNonces[thr_id]);
cudaFreeHost(h_resNonces[thr_id]);
}
// Target Difficulty
__host__
void cuda_check_cpu_setTarget(const void *ptarget)
{
CUDA_SAFE_CALL(cudaMemcpyToSymbol(pTarget, ptarget, 32, 0, cudaMemcpyHostToDevice));
}
/* --------------------------------------------------------------------------------------------- */
__device__ __forceinline__
static bool hashbelowtarget(const uint32_t *const __restrict__ hash, const uint32_t *const __restrict__ target)
{
if (hash[7] > target[7])
return false;
if (hash[7] < target[7])
return true;
if (hash[6] > target[6])
return false;
if (hash[6] < target[6])
return true;
if (hash[5] > target[5])
return false;
if (hash[5] < target[5])
return true;
if (hash[4] > target[4])
return false;
if (hash[4] < target[4])
return true;
if (hash[3] > target[3])
return false;
if (hash[3] < target[3])
return true;
if (hash[2] > target[2])
return false;
if (hash[2] < target[2])
return true;
if (hash[1] > target[1])
return false;
if (hash[1] < target[1])
return true;
if (hash[0] > target[0])
return false;
return true;
}
__global__ __launch_bounds__(512, 4)
void cuda_checkhash_64(uint32_t threads, uint32_t startNounce, uint32_t *hash, uint32_t *resNonces)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
// shl 4 = *16 x 4 (uint32) = 64 bytes
// todo: use only 32 bytes * threads if possible
uint32_t *inpHash = &hash[thread << 4];
if (resNonces[0] == UINT32_MAX) {
if (hashbelowtarget(inpHash, pTarget))
resNonces[0] = (startNounce + thread);
}
}
}
__global__ __launch_bounds__(512, 4)
void cuda_checkhash_32(uint32_t threads, uint32_t startNounce, uint32_t *hash, uint32_t *resNonces)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t *inpHash = &hash[thread << 3];
if (resNonces[0] == UINT32_MAX) {
if (hashbelowtarget(inpHash, pTarget))
resNonces[0] = (startNounce + thread);
}
}
}
__host__
uint32_t cuda_check_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_inputHash)
{
cudaMemset(d_resNonces[thr_id], 0xff, sizeof(uint32_t));
const uint32_t threadsperblock = 512;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
if (!init_done) {
applog(LOG_ERR, "missing call to cuda_check_cpu_init");
return UINT32_MAX;
}
cuda_checkhash_64 <<<grid, block>>> (threads, startNounce, d_inputHash, d_resNonces[thr_id]);
cudaThreadSynchronize();
cudaMemcpy(h_resNonces[thr_id], d_resNonces[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
return h_resNonces[thr_id][0];
}
__host__
uint32_t cuda_check_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_inputHash)
{
cudaMemset(d_resNonces[thr_id], 0xff, sizeof(uint32_t));
const uint32_t threadsperblock = 512;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
if (!init_done) {
applog(LOG_ERR, "missing call to cuda_check_cpu_init");
return UINT32_MAX;
}
cuda_checkhash_32 <<<grid, block>>> (threads, startNounce, d_inputHash, d_resNonces[thr_id]);
cudaThreadSynchronize();
cudaMemcpy(h_resNonces[thr_id], d_resNonces[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
return h_resNonces[thr_id][0];
}
/* --------------------------------------------------------------------------------------------- */
__global__ __launch_bounds__(512, 4)
void cuda_checkhash_64_suppl(uint32_t startNounce, uint32_t *hash, uint32_t *resNonces)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
uint32_t *inpHash = &hash[thread << 4];
if (hashbelowtarget(inpHash, pTarget)) {
int resNum = ++resNonces[0];
__threadfence();
if (resNum < 8)
resNonces[resNum] = (startNounce + thread);
}
}
__host__
uint32_t cuda_check_hash_suppl(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_inputHash, uint8_t numNonce)
{
uint32_t rescnt, result = 0;
const uint32_t threadsperblock = 512;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
if (!init_done) {
applog(LOG_ERR, "missing call to cuda_check_cpu_init");
return 0;
}
// first element stores the count of found nonces
cudaMemset(d_resNonces[thr_id], 0, sizeof(uint32_t));
cuda_checkhash_64_suppl <<<grid, block>>> (startNounce, d_inputHash, d_resNonces[thr_id]);
cudaThreadSynchronize();
cudaMemcpy(h_resNonces[thr_id], d_resNonces[thr_id], 8*sizeof(uint32_t), cudaMemcpyDeviceToHost);
rescnt = h_resNonces[thr_id][0];
if (rescnt > numNonce) {
if (numNonce <= rescnt) {
result = h_resNonces[thr_id][numNonce+1];
}
if (opt_debug)
applog(LOG_WARNING, "Found %d nonces: %x + %x", rescnt, h_resNonces[thr_id][1], result);
}
return result;
}
/* --------------------------------------------------------------------------------------------- */
__global__
void cuda_check_hash_branch_64(uint32_t threads, uint32_t startNounce, uint32_t *g_nonceVector, uint32_t *g_hash, uint32_t *resNounce)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t nounce = g_nonceVector[thread];
uint32_t hashPosition = (nounce - startNounce) << 4;
uint32_t *inpHash = &g_hash[hashPosition];
for (int i = 7; i >= 0; i--) {
if (inpHash[i] > pTarget[i]) {
return;
}
if (inpHash[i] < pTarget[i]) {
break;
}
}
if (resNounce[0] > nounce)
resNounce[0] = nounce;
}
}
__host__
uint32_t cuda_check_hash_branch(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_inputHash, int order)
{
const uint32_t threadsperblock = 256;
uint32_t result = UINT32_MAX;
if (!init_done) {
applog(LOG_ERR, "missing call to cuda_check_cpu_init");
return UINT32_MAX;
}
cudaMemset(d_resNonces[thr_id], 0xff, sizeof(uint32_t));
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
cuda_check_hash_branch_64 <<<grid, block>>> (threads, startNounce, d_nonceVector, d_inputHash, d_resNonces[thr_id]);
MyStreamSynchronize(NULL, order, thr_id);
cudaMemcpy(h_resNonces[thr_id], d_resNonces[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
cudaThreadSynchronize();
result = *h_resNonces[thr_id];
return result;
}
/* Function to get the compiled Shader Model version */
int cuda_arch[MAX_GPUS] = { 0 };
__global__ void nvcc_get_arch(int *d_version)
{
*d_version = 0;
#ifdef __CUDA_ARCH__
*d_version = __CUDA_ARCH__;
#endif
}
__host__
int cuda_get_arch(int thr_id)
{
int *d_version;
int dev_id = device_map[thr_id];
if (cuda_arch[dev_id] == 0) {
// only do it once...
cudaMalloc(&d_version, sizeof(int));
nvcc_get_arch <<< 1, 1 >>> (d_version);
cudaMemcpy(&cuda_arch[dev_id], d_version, sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(d_version);
}
return cuda_arch[dev_id];
}