1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-18 10:40:14 +00:00
ccminer/heavy/heavy.cu
2016-09-27 00:33:06 +02:00

402 lines
11 KiB
Plaintext

#include <stdio.h>
#include <openssl/sha.h>
#include <cuda.h>
#include <map>
// include thrust if possible
#if defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ >= 2 && CUDA_VERSION < 7000
#warning "Heavy: incompatible GCC version!"
#define USE_THRUST 0
#else
#define USE_THRUST 1
#endif
#if USE_THRUST
#include <thrust/remove.h>
#include <thrust/device_vector.h>
#endif
#include "miner.h"
extern "C" {
#include "sph/sph_keccak.h"
#include "sph/sph_blake.h"
#include "sph/sph_groestl.h"
}
#include "hefty1.h"
#include "heavy/heavy.h"
#include "cuda_helper.h"
extern uint32_t *d_hash2output[MAX_GPUS];
extern uint32_t *d_hash3output[MAX_GPUS];
extern uint32_t *d_hash4output[MAX_GPUS];
extern uint32_t *d_hash5output[MAX_GPUS];
#define HEAVYCOIN_BLKHDR_SZ 84
#define MNR_BLKHDR_SZ 80
// nonce-array für die threads
uint32_t *heavy_nonceVector[MAX_GPUS];
extern uint32_t *heavy_heftyHashes[MAX_GPUS];
/* Combines top 64-bits from each hash into a single hash */
static void combine_hashes(uint32_t *out, const uint32_t *hash1, const uint32_t *hash2, const uint32_t *hash3, const uint32_t *hash4)
{
const uint32_t *hash[4] = { hash1, hash2, hash3, hash4 };
int bits;
unsigned int i;
uint32_t mask;
unsigned int k;
/* Transpose first 64 bits of each hash into out */
memset(out, 0, 32);
bits = 0;
for (i = 7; i >= 6; i--) {
for (mask = 0x80000000; mask; mask >>= 1) {
for (k = 0; k < 4; k++) {
out[(255 - bits)/32] <<= 1;
if ((hash[k][i] & mask) != 0)
out[(255 - bits)/32] |= 1;
bits++;
}
}
}
}
#ifdef _MSC_VER
#include <intrin.h>
static uint32_t __inline bitsset( uint32_t x )
{
DWORD r = 0;
_BitScanReverse(&r, x);
return r;
}
#else
static uint32_t bitsset( uint32_t x )
{
return 31-__builtin_clz(x);
}
#endif
// Finde das high bit in einem Multiword-Integer.
static int findhighbit(const uint32_t *ptarget, int words)
{
int i;
int highbit = 0;
for (i=words-1; i >= 0; --i)
{
if (ptarget[i] != 0) {
highbit = i*32 + bitsset(ptarget[i])+1;
break;
}
}
return highbit;
}
// Generiere ein Multiword-Integer das die Zahl
// (2 << highbit) - 1 repräsentiert.
static void genmask(uint32_t *ptarget, int words, int highbit)
{
int i;
for (i=words-1; i >= 0; --i)
{
if ((i+1)*32 <= highbit)
ptarget[i] = UINT32_MAX;
else if (i*32 > highbit)
ptarget[i] = 0x00000000;
else
ptarget[i] = (1 << (highbit-i*32)) - 1;
}
}
struct check_nonce_for_remove
{
check_nonce_for_remove(uint64_t target, uint32_t *hashes, uint32_t hashlen, uint32_t startNonce) :
m_target(target),
m_hashes(hashes),
m_hashlen(hashlen),
m_startNonce(startNonce) { }
uint64_t m_target;
uint32_t *m_hashes;
uint32_t m_hashlen;
uint32_t m_startNonce;
__device__
bool operator()(const uint32_t x)
{
// Position im Hash Buffer
uint32_t hashIndex = x - m_startNonce;
// Wert des Hashes (als uint64_t) auslesen.
// Steht im 6. und 7. Wort des Hashes (jeder dieser Hashes hat 512 Bits)
uint64_t hashValue = *((uint64_t*)(&m_hashes[m_hashlen*hashIndex + 6]));
bool res = (hashValue & m_target) != hashValue;
//printf("ndx=%x val=%08x target=%lx\n", hashIndex, hashValue, m_target);
// gegen das Target prüfen. Es dürfen nur Bits aus dem Target gesetzt sein.
return res;
}
};
static bool init[MAX_GPUS] = { 0 };
__host__
int scanhash_heavy(int thr_id, struct work *work, uint32_t max_nonce, unsigned long *hashes_done, uint32_t maxvote, int blocklen)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
// CUDA will process thousands of threads.
uint32_t throughput = cuda_default_throughput(thr_id, (1U << 19) - 256);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
int rc = 0;
uint32_t *hash = NULL;
uint32_t *cpu_nonceVector = NULL;
int nrmCalls[6];
memset(nrmCalls, 0, sizeof(int) * 6);
if (opt_benchmark)
ptarget[7] = 0x000f;
// für jeden Hash ein individuelles Target erstellen basierend
// auf dem höchsten Bit, das in ptarget gesetzt ist.
int highbit = findhighbit(ptarget, 8);
uint32_t target2[2], target3[2], target4[2], target5[2];
genmask(target2, 2, highbit/4+(((highbit%4)>3)?1:0) ); // SHA256
genmask(target3, 2, highbit/4+(((highbit%4)>2)?1:0) ); // keccak512
genmask(target4, 2, highbit/4+(((highbit%4)>1)?1:0) ); // groestl512
genmask(target5, 2, highbit/4+(((highbit%4)>0)?1:0) ); // blake512
if (!init[thr_id])
{
cudaSetDevice(device_map[thr_id]);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
CUDA_LOG_ERROR();
}
gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput);
hefty_cpu_init(thr_id, throughput);
sha256_cpu_init(thr_id, throughput);
keccak512_cpu_init(thr_id, throughput);
groestl512_cpu_init(thr_id, throughput);
blake512_cpu_init(thr_id, throughput);
combine_cpu_init(thr_id, throughput);
CUDA_SAFE_CALL(cudaMalloc(&heavy_nonceVector[thr_id], sizeof(uint32_t) * throughput));
init[thr_id] = true;
}
// weird but require at least one cudaSetDevice first
CUDA_SAFE_CALL(cudaMallocHost(&hash, (size_t) 32 * throughput));
CUDA_SAFE_CALL(cudaMallocHost(&cpu_nonceVector, sizeof(uint32_t) * throughput));
if (blocklen == HEAVYCOIN_BLKHDR_SZ)
{
uint16_t *ext = (uint16_t*) &pdata[20];
if (opt_vote > maxvote && !opt_benchmark) {
applog(LOG_WARNING, "Your block reward vote (%hu) exceeds the maxvote reported by the pool (%hu).",
opt_vote, maxvote);
}
if (opt_trust_pool && opt_vote > maxvote) {
applog(LOG_WARNING, "Capping block reward vote to maxvote reported by pool.");
ext[0] = maxvote;
}
else
ext[0] = opt_vote;
}
// Setze die Blockdaten
hefty_cpu_setBlock(thr_id, throughput, pdata, blocklen);
sha256_cpu_setBlock(pdata, blocklen);
keccak512_cpu_setBlock(pdata, blocklen);
groestl512_cpu_setBlock(pdata, blocklen);
blake512_cpu_setBlock(pdata, blocklen);
do {
uint32_t actualNumberOfValuesInNonceVectorGPU = throughput;
////// Compaction init
hefty_cpu_hash(thr_id, throughput, pdata[19]);
sha256_cpu_hash(thr_id, throughput, pdata[19]);
// Hier ist die längste CPU Wartephase. Deshalb ein strategisches MyStreamSynchronize() hier.
MyStreamSynchronize(NULL, 1, thr_id);
#if USE_THRUST
thrust::device_ptr<uint32_t> devNoncePtr(heavy_nonceVector[thr_id]);
thrust::device_ptr<uint32_t> devNoncePtrEnd((heavy_nonceVector[thr_id]) + throughput);
////// Compaction
uint64_t *t = (uint64_t*) target2;
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*t, d_hash2output[thr_id], 8, pdata[19]));
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
if(actualNumberOfValuesInNonceVectorGPU == 0)
goto emptyNonceVector;
keccak512_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19]);
////// Compaction
t = (uint64_t*) target3;
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*t, d_hash3output[thr_id], 16, pdata[19]));
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
if(actualNumberOfValuesInNonceVectorGPU == 0)
goto emptyNonceVector;
blake512_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19]);
////// Compaction
t = (uint64_t*) target5;
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*t, d_hash5output[thr_id], 16, pdata[19]));
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
if(actualNumberOfValuesInNonceVectorGPU == 0)
goto emptyNonceVector;
groestl512_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19]);
////// Compaction
t = (uint64_t*) target4;
devNoncePtrEnd = thrust::remove_if(devNoncePtr, devNoncePtrEnd, check_nonce_for_remove(*t, d_hash4output[thr_id], 16, pdata[19]));
actualNumberOfValuesInNonceVectorGPU = (uint32_t)(devNoncePtrEnd - devNoncePtr);
#else
// todo (nvlabs cub ?)
actualNumberOfValuesInNonceVectorGPU = 0;
#endif
if(actualNumberOfValuesInNonceVectorGPU == 0)
goto emptyNonceVector;
// combine
combine_cpu_hash(thr_id, actualNumberOfValuesInNonceVectorGPU, pdata[19], hash);
if (opt_tracegpu) {
applog(LOG_BLUE, "heavy GPU hash:");
applog_hash((uchar*)hash);
}
// Ergebnisse kopieren
if(actualNumberOfValuesInNonceVectorGPU > 0)
{
size_t size = sizeof(uint32_t) * actualNumberOfValuesInNonceVectorGPU;
cudaMemcpy(cpu_nonceVector, heavy_nonceVector[thr_id], size, cudaMemcpyDeviceToHost);
for (uint32_t i=0; i < actualNumberOfValuesInNonceVectorGPU; i++)
{
uint32_t nonce = cpu_nonceVector[i];
uint32_t *foundhash = &hash[8*i];
if (foundhash[7] <= ptarget[7] && fulltest(foundhash, ptarget)) {
uint32_t vhash[8];
pdata[19] += nonce - pdata[19];
heavycoin_hash((uchar*)vhash, (uchar*)pdata, blocklen);
if (memcmp(vhash, foundhash, 32)) {
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", nonce);
} else {
work_set_target_ratio(work, vhash);
rc = 1;
goto exit;
}
}
}
}
emptyNonceVector:
if ((uint64_t) throughput + pdata[19] >= max_nonce) {
pdata[19] = max_nonce;
break;
}
pdata[19] += throughput;
} while (!work_restart[thr_id].restart);
exit:
*hashes_done = pdata[19] - first_nonce;
cudaFreeHost(cpu_nonceVector);
cudaFreeHost(hash);
CUDA_LOG_ERROR();
return rc;
}
// cleanup
extern "C" void free_heavy(int thr_id)
{
if (!init[thr_id])
return;
cudaThreadSynchronize();
cudaFree(heavy_nonceVector[thr_id]);
blake512_cpu_free(thr_id);
groestl512_cpu_free(thr_id);
hefty_cpu_free(thr_id);
keccak512_cpu_free(thr_id);
sha256_cpu_free(thr_id);
combine_cpu_free(thr_id);
init[thr_id] = false;
cudaDeviceSynchronize();
}
__host__
void heavycoin_hash(uchar* output, const uchar* input, int len)
{
unsigned char hash1[32];
unsigned char hash2[32];
uint32_t hash3[16];
uint32_t hash4[16];
uint32_t hash5[16];
uint32_t *final;
SHA256_CTX ctx;
sph_keccak512_context keccakCtx;
sph_groestl512_context groestlCtx;
sph_blake512_context blakeCtx;
HEFTY1(input, len, hash1);
/* HEFTY1 is new, so take an extra security measure to eliminate
* the possiblity of collisions:
*
* Hash(x) = SHA256(x + HEFTY1(x))
*
* N.B. '+' is concatenation.
*/
SHA256_Init(&ctx);
SHA256_Update(&ctx, input, len);
SHA256_Update(&ctx, hash1, sizeof(hash1));
SHA256_Final(hash2, &ctx);
/* Additional security: Do not rely on a single cryptographic hash
* function. Instead, combine the outputs of 4 of the most secure
* cryptographic hash functions-- SHA256, KECCAK512, GROESTL512
* and BLAKE512.
*/
sph_keccak512_init(&keccakCtx);
sph_keccak512(&keccakCtx, input, len);
sph_keccak512(&keccakCtx, hash1, sizeof(hash1));
sph_keccak512_close(&keccakCtx, (void *)&hash3);
sph_groestl512_init(&groestlCtx);
sph_groestl512(&groestlCtx, input, len);
sph_groestl512(&groestlCtx, hash1, sizeof(hash1));
sph_groestl512_close(&groestlCtx, (void *)&hash4);
sph_blake512_init(&blakeCtx);
sph_blake512(&blakeCtx, input, len);
sph_blake512(&blakeCtx, (unsigned char *)&hash1, sizeof(hash1));
sph_blake512_close(&blakeCtx, (void *)&hash5);
final = (uint32_t *)output;
combine_hashes(final, (uint32_t *)hash2, hash3, hash4, hash5);
}