mirror of https://github.com/GOSTSec/ccminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
291 lines
8.2 KiB
291 lines
8.2 KiB
#include <memory.h> |
|
|
|
#ifdef __INTELLISENSE__ |
|
/* just for vstudio code colors, only uncomment that temporary, dont commit it */ |
|
//#undef __CUDA_ARCH__ |
|
//#define __CUDA_ARCH__ 300 |
|
#endif |
|
|
|
#include "cuda_helper.h" |
|
|
|
#define TPB30 160 |
|
#define TPB20 160 |
|
|
|
#if (__CUDA_ARCH__ >= 200 && __CUDA_ARCH__ <= 350) || !defined(__CUDA_ARCH__) |
|
__constant__ static uint2 blake2b_IV_sm2[8] = { |
|
{ 0xf3bcc908, 0x6a09e667 }, |
|
{ 0x84caa73b, 0xbb67ae85 }, |
|
{ 0xfe94f82b, 0x3c6ef372 }, |
|
{ 0x5f1d36f1, 0xa54ff53a }, |
|
{ 0xade682d1, 0x510e527f }, |
|
{ 0x2b3e6c1f, 0x9b05688c }, |
|
{ 0xfb41bd6b, 0x1f83d9ab }, |
|
{ 0x137e2179, 0x5be0cd19 } |
|
}; |
|
#endif |
|
|
|
#if __CUDA_ARCH__ >= 200 && __CUDA_ARCH__ <= 350 |
|
|
|
#define reduceDuplexRow(rowIn, rowInOut, rowOut) { \ |
|
for (int i = 0; i < 8; i++) { \ |
|
for (int j = 0; j < 12; j++) \ |
|
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; \ |
|
round_lyra(state); \ |
|
for (int j = 0; j < 12; j++) \ |
|
Matrix[j + 12 * i][rowOut] ^= state[j]; \ |
|
Matrix[0 + 12 * i][rowInOut] ^= state[11]; \ |
|
Matrix[1 + 12 * i][rowInOut] ^= state[0]; \ |
|
Matrix[2 + 12 * i][rowInOut] ^= state[1]; \ |
|
Matrix[3 + 12 * i][rowInOut] ^= state[2]; \ |
|
Matrix[4 + 12 * i][rowInOut] ^= state[3]; \ |
|
Matrix[5 + 12 * i][rowInOut] ^= state[4]; \ |
|
Matrix[6 + 12 * i][rowInOut] ^= state[5]; \ |
|
Matrix[7 + 12 * i][rowInOut] ^= state[6]; \ |
|
Matrix[8 + 12 * i][rowInOut] ^= state[7]; \ |
|
Matrix[9 + 12 * i][rowInOut] ^= state[8]; \ |
|
Matrix[10+ 12 * i][rowInOut] ^= state[9]; \ |
|
Matrix[11+ 12 * i][rowInOut] ^= state[10]; \ |
|
} \ |
|
} |
|
|
|
#define absorbblock(in) { \ |
|
state[0] ^= Matrix[0][in]; \ |
|
state[1] ^= Matrix[1][in]; \ |
|
state[2] ^= Matrix[2][in]; \ |
|
state[3] ^= Matrix[3][in]; \ |
|
state[4] ^= Matrix[4][in]; \ |
|
state[5] ^= Matrix[5][in]; \ |
|
state[6] ^= Matrix[6][in]; \ |
|
state[7] ^= Matrix[7][in]; \ |
|
state[8] ^= Matrix[8][in]; \ |
|
state[9] ^= Matrix[9][in]; \ |
|
state[10] ^= Matrix[10][in]; \ |
|
state[11] ^= Matrix[11][in]; \ |
|
round_lyra(state); \ |
|
round_lyra(state); \ |
|
round_lyra(state); \ |
|
round_lyra(state); \ |
|
round_lyra(state); \ |
|
round_lyra(state); \ |
|
round_lyra(state); \ |
|
round_lyra(state); \ |
|
round_lyra(state); \ |
|
round_lyra(state); \ |
|
round_lyra(state); \ |
|
round_lyra(state); \ |
|
} |
|
|
|
static __device__ __forceinline__ |
|
void Gfunc(uint2 & a, uint2 &b, uint2 &c, uint2 &d) |
|
{ |
|
a += b; d ^= a; d = SWAPUINT2(d); |
|
c += d; b ^= c; b = ROR2(b, 24); |
|
a += b; d ^= a; d = ROR2(d, 16); |
|
c += d; b ^= c; b = ROR2(b, 63); |
|
} |
|
|
|
__device__ __forceinline__ |
|
static void round_lyra(uint2 *s) |
|
{ |
|
Gfunc(s[0], s[4], s[8], s[12]); |
|
Gfunc(s[1], s[5], s[9], s[13]); |
|
Gfunc(s[2], s[6], s[10], s[14]); |
|
Gfunc(s[3], s[7], s[11], s[15]); |
|
Gfunc(s[0], s[5], s[10], s[15]); |
|
Gfunc(s[1], s[6], s[11], s[12]); |
|
Gfunc(s[2], s[7], s[8], s[13]); |
|
Gfunc(s[3], s[4], s[9], s[14]); |
|
} |
|
|
|
__device__ __forceinline__ |
|
void reduceDuplexRowSetup(const int rowIn, const int rowInOut, const int rowOut, uint2 state[16], uint2 Matrix[96][8]) |
|
{ |
|
#if __CUDA_ARCH__ > 500 |
|
#pragma unroll |
|
#endif |
|
for (int i = 0; i < 8; i++) |
|
{ |
|
#pragma unroll |
|
for (int j = 0; j < 12; j++) |
|
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; |
|
|
|
round_lyra(state); |
|
|
|
#pragma unroll |
|
for (int j = 0; j < 12; j++) |
|
Matrix[j + 84 - 12 * i][rowOut] = Matrix[12 * i + j][rowIn] ^ state[j]; |
|
|
|
Matrix[0 + 12 * i][rowInOut] ^= state[11]; |
|
Matrix[1 + 12 * i][rowInOut] ^= state[0]; |
|
Matrix[2 + 12 * i][rowInOut] ^= state[1]; |
|
Matrix[3 + 12 * i][rowInOut] ^= state[2]; |
|
Matrix[4 + 12 * i][rowInOut] ^= state[3]; |
|
Matrix[5 + 12 * i][rowInOut] ^= state[4]; |
|
Matrix[6 + 12 * i][rowInOut] ^= state[5]; |
|
Matrix[7 + 12 * i][rowInOut] ^= state[6]; |
|
Matrix[8 + 12 * i][rowInOut] ^= state[7]; |
|
Matrix[9 + 12 * i][rowInOut] ^= state[8]; |
|
Matrix[10 + 12 * i][rowInOut] ^= state[9]; |
|
Matrix[11 + 12 * i][rowInOut] ^= state[10]; |
|
} |
|
} |
|
|
|
__global__ __launch_bounds__(TPB30, 1) |
|
void lyra2_gpu_hash_32_sm2(uint32_t threads, uint64_t *g_hash) |
|
{ |
|
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
if (thread < threads) |
|
{ |
|
uint2 state[16]; |
|
|
|
#pragma unroll |
|
for (int i = 0; i<4; i++) { |
|
LOHI(state[i].x, state[i].y, g_hash[threads*i + thread]); |
|
} //password |
|
|
|
#pragma unroll |
|
for (int i = 0; i<4; i++) { |
|
state[i + 4] = state[i]; |
|
} //salt |
|
|
|
#pragma unroll |
|
for (int i = 0; i<8; i++) { |
|
state[i + 8] = blake2b_IV_sm2[i]; |
|
} |
|
|
|
// blake2blyra x2 |
|
//#pragma unroll 24 |
|
for (int i = 0; i<24; i++) { |
|
round_lyra(state); |
|
} //because 12 is not enough |
|
|
|
uint2 Matrix[96][8]; // not cool |
|
|
|
// reducedSqueezeRow0 |
|
#pragma unroll 8 |
|
for (int i = 0; i < 8; i++) |
|
{ |
|
#pragma unroll 12 |
|
for (int j = 0; j<12; j++) { |
|
Matrix[j + 84 - 12 * i][0] = state[j]; |
|
} |
|
round_lyra(state); |
|
} |
|
|
|
// reducedSqueezeRow1 |
|
#pragma unroll 8 |
|
for (int i = 0; i < 8; i++) |
|
{ |
|
#pragma unroll 12 |
|
for (int j = 0; j<12; j++) { |
|
state[j] ^= Matrix[j + 12 * i][0]; |
|
} |
|
round_lyra(state); |
|
#pragma unroll 12 |
|
for (int j = 0; j<12; j++) { |
|
Matrix[j + 84 - 12 * i][1] = Matrix[j + 12 * i][0] ^ state[j]; |
|
} |
|
} |
|
|
|
reduceDuplexRowSetup(1, 0, 2, state, Matrix); |
|
reduceDuplexRowSetup(2, 1, 3, state, Matrix); |
|
reduceDuplexRowSetup(3, 0, 4, state, Matrix); |
|
reduceDuplexRowSetup(4, 3, 5, state, Matrix); |
|
reduceDuplexRowSetup(5, 2, 6, state, Matrix); |
|
reduceDuplexRowSetup(6, 1, 7, state, Matrix); |
|
|
|
uint32_t rowa; |
|
rowa = state[0].x & 7; |
|
reduceDuplexRow(7, rowa, 0); |
|
rowa = state[0].x & 7; |
|
reduceDuplexRow(0, rowa, 3); |
|
rowa = state[0].x & 7; |
|
reduceDuplexRow(3, rowa, 6); |
|
rowa = state[0].x & 7; |
|
reduceDuplexRow(6, rowa, 1); |
|
rowa = state[0].x & 7; |
|
reduceDuplexRow(1, rowa, 4); |
|
rowa = state[0].x & 7; |
|
reduceDuplexRow(4, rowa, 7); |
|
rowa = state[0].x & 7; |
|
reduceDuplexRow(7, rowa, 2); |
|
rowa = state[0].x & 7; |
|
reduceDuplexRow(2, rowa, 5); |
|
|
|
absorbblock(rowa); |
|
|
|
#pragma unroll |
|
for (int i = 0; i<4; i++) { |
|
g_hash[threads*i + thread] = devectorize(state[i]); |
|
} |
|
|
|
} //thread |
|
} |
|
|
|
#else |
|
/* if __CUDA_ARCH__ < 200 .. host */ |
|
__global__ void lyra2_gpu_hash_32_sm2(uint32_t threads, uint64_t *g_hash) {} |
|
#endif |
|
|
|
// ------------------------------------------------------------------------------------------------------------------------- |
|
|
|
// lyra2 cant be used as-is in 512-bits hash chains, tx to djm for these weird offsets since first lyra2 algo... |
|
|
|
#if __CUDA_ARCH__ >= 200 && __CUDA_ARCH__ <= 350 |
|
|
|
__global__ __launch_bounds__(128, 8) |
|
void hash64_to_lyra32_gpu(const uint32_t threads, const uint32_t* d_hash64, uint2* d_hash_lyra, const uint32_t round) |
|
{ |
|
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
if (thread < threads) |
|
{ |
|
const size_t offset = (size_t) 16 * thread + (round * 8U); |
|
uint2 *psrc = (uint2*) (&d_hash64[offset]); |
|
uint2 *pdst = (uint2*) (&d_hash_lyra[thread]); |
|
pdst[threads*0] = __ldg(&psrc[0]); |
|
pdst[threads*1] = __ldg(&psrc[1]); |
|
pdst[threads*2] = __ldg(&psrc[2]); |
|
pdst[threads*3] = __ldg(&psrc[3]); |
|
} |
|
} |
|
|
|
__global__ __launch_bounds__(128, 8) |
|
void hash64_from_lyra32_gpu(const uint32_t threads, const uint32_t* d_hash64, uint2* d_hash_lyra, const uint32_t round) |
|
{ |
|
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
if (thread < threads) |
|
{ |
|
const size_t offset = (size_t) 16 * thread + (round * 8U); |
|
uint2 *psrc = (uint2*) (&d_hash_lyra[thread]); |
|
uint2 *pdst = (uint2*) (&d_hash64[offset]); |
|
pdst[0] = psrc[0]; |
|
pdst[1] = psrc[threads*1]; |
|
pdst[2] = psrc[threads*2]; |
|
pdst[3] = psrc[threads*3]; |
|
} |
|
} |
|
#else |
|
/* if __CUDA_ARCH__ < 200 .. host */ |
|
__global__ void hash64_to_lyra32_gpu(const uint32_t threads, const uint32_t* d_hash64, uint2* d_hash_lyra, const uint32_t round) {} |
|
__global__ void hash64_from_lyra32_gpu(const uint32_t threads, const uint32_t* d_hash64, uint2* d_hash_lyra, const uint32_t round) {} |
|
#endif |
|
|
|
__host__ |
|
void hash64_to_lyra32(int thr_id, const uint32_t threads, uint32_t* d_hash64, uint64_t* d_hash_lyra, const uint32_t round) |
|
{ |
|
const uint32_t threadsperblock = 128; |
|
dim3 grid((threads + threadsperblock - 1) / threadsperblock); |
|
dim3 block(threadsperblock); |
|
|
|
hash64_to_lyra32_gpu <<<grid, block>>> (threads, d_hash64, (uint2*) d_hash_lyra, round); |
|
} |
|
|
|
__host__ |
|
void hash64_from_lyra32(int thr_id, const uint32_t threads, uint32_t* d_hash64, uint64_t* d_hash_lyra, const uint32_t round) |
|
{ |
|
const uint32_t threadsperblock = 128; |
|
dim3 grid((threads + threadsperblock - 1) / threadsperblock); |
|
dim3 block(threadsperblock); |
|
|
|
hash64_from_lyra32_gpu <<<grid, block>>> (threads, d_hash64, (uint2*) d_hash_lyra, round); |
|
}
|
|
|