mirror of
https://github.com/GOSTSec/ccminer
synced 2025-01-25 22:14:30 +00:00
c3bdb623e8
Added to most algos, checkhash function scans a big range and can find multiple nonces at once if the difficulty is low. Stop ignoring them, submit second one if found... Clean the draft code for rc=2 implemented for blake and pentablake btw... fix the reduced displayed hashrate when a nonce is found... Signed-off-by: Tanguy Pruvot <tanguy.pruvot@gmail.com>
249 lines
8.6 KiB
Plaintext
249 lines
8.6 KiB
Plaintext
extern "C"
|
|
{
|
|
#include "sph/sph_keccak.h"
|
|
#include "sph/sph_blake.h"
|
|
#include "sph/sph_groestl.h"
|
|
#include "sph/sph_jh.h"
|
|
#include "sph/sph_skein.h"
|
|
}
|
|
|
|
#include "miner.h"
|
|
#include "cuda_helper.h"
|
|
|
|
static uint32_t *d_hash[8];
|
|
|
|
extern void jackpot_keccak512_cpu_init(int thr_id, int threads);
|
|
extern void jackpot_keccak512_cpu_setBlock(void *pdata, size_t inlen);
|
|
extern void jackpot_keccak512_cpu_hash(int thr_id, int threads, uint32_t startNounce, uint32_t *d_hash, int order);
|
|
|
|
extern void quark_blake512_cpu_init(int thr_id, int threads);
|
|
extern void quark_blake512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
|
|
|
|
extern void quark_groestl512_cpu_init(int thr_id, int threads);
|
|
extern void quark_groestl512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
|
|
|
|
extern void quark_jh512_cpu_init(int thr_id, int threads);
|
|
extern void quark_jh512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
|
|
|
|
extern void quark_skein512_cpu_init(int thr_id, int threads);
|
|
extern void quark_skein512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
|
|
|
|
extern void jackpot_compactTest_cpu_init(int thr_id, int threads);
|
|
extern void jackpot_compactTest_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable,
|
|
uint32_t *d_nonces1, size_t *nrm1,
|
|
uint32_t *d_nonces2, size_t *nrm2,
|
|
int order);
|
|
|
|
extern uint32_t cuda_check_hash_branch(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_inputHash, int order);
|
|
|
|
// Speicher zur Generierung der Noncevektoren für die bedingten Hashes
|
|
static uint32_t *d_jackpotNonces[8];
|
|
static uint32_t *d_branch1Nonces[8];
|
|
static uint32_t *d_branch2Nonces[8];
|
|
static uint32_t *d_branch3Nonces[8];
|
|
|
|
// Original jackpothash Funktion aus einem miner Quelltext
|
|
extern "C" unsigned int jackpothash(void *state, const void *input)
|
|
{
|
|
sph_blake512_context ctx_blake;
|
|
sph_groestl512_context ctx_groestl;
|
|
sph_jh512_context ctx_jh;
|
|
sph_keccak512_context ctx_keccak;
|
|
sph_skein512_context ctx_skein;
|
|
|
|
uint32_t hash[16];
|
|
|
|
sph_keccak512_init(&ctx_keccak);
|
|
sph_keccak512 (&ctx_keccak, input, 80);
|
|
sph_keccak512_close(&ctx_keccak, hash);
|
|
|
|
unsigned int round;
|
|
for (round = 0; round < 3; round++) {
|
|
if (hash[0] & 0x01) {
|
|
sph_groestl512_init(&ctx_groestl);
|
|
sph_groestl512 (&ctx_groestl, (&hash), 64);
|
|
sph_groestl512_close(&ctx_groestl, (&hash));
|
|
}
|
|
else {
|
|
sph_skein512_init(&ctx_skein);
|
|
sph_skein512 (&ctx_skein, (&hash), 64);
|
|
sph_skein512_close(&ctx_skein, (&hash));
|
|
}
|
|
if (hash[0] & 0x01) {
|
|
sph_blake512_init(&ctx_blake);
|
|
sph_blake512 (&ctx_blake, (&hash), 64);
|
|
sph_blake512_close(&ctx_blake, (&hash));
|
|
}
|
|
else {
|
|
sph_jh512_init(&ctx_jh);
|
|
sph_jh512 (&ctx_jh, (&hash), 64);
|
|
sph_jh512_close(&ctx_jh, (&hash));
|
|
}
|
|
}
|
|
memcpy(state, hash, 32);
|
|
|
|
return round;
|
|
}
|
|
|
|
static bool init[8] = { 0 };
|
|
|
|
extern "C" int scanhash_jackpot(int thr_id, uint32_t *pdata,
|
|
const uint32_t *ptarget, uint32_t max_nonce,
|
|
unsigned long *hashes_done)
|
|
{
|
|
const uint32_t first_nonce = pdata[19];
|
|
|
|
if (opt_benchmark)
|
|
((uint32_t*)ptarget)[7] = 0x000f;
|
|
|
|
int throughput = opt_work_size ? opt_work_size : (1 << 20); // 256*4096
|
|
throughput = min(throughput, (int)(max_nonce - first_nonce));
|
|
|
|
if (!init[thr_id])
|
|
{
|
|
cudaSetDevice(device_map[thr_id]);
|
|
|
|
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], 16 * sizeof(uint32_t) * throughput));
|
|
|
|
jackpot_keccak512_cpu_init(thr_id, throughput);
|
|
jackpot_compactTest_cpu_init(thr_id, throughput);
|
|
quark_blake512_cpu_init(thr_id, throughput);
|
|
quark_groestl512_cpu_init(thr_id, throughput);
|
|
quark_jh512_cpu_init(thr_id, throughput);
|
|
quark_skein512_cpu_init(thr_id, throughput);
|
|
|
|
cuda_check_cpu_init(thr_id, throughput);
|
|
|
|
cudaMalloc(&d_branch1Nonces[thr_id], sizeof(uint32_t)*throughput*2);
|
|
cudaMalloc(&d_branch2Nonces[thr_id], sizeof(uint32_t)*throughput*2);
|
|
cudaMalloc(&d_branch3Nonces[thr_id], sizeof(uint32_t)*throughput*2);
|
|
|
|
CUDA_SAFE_CALL(cudaMalloc(&d_jackpotNonces[thr_id], sizeof(uint32_t)*throughput*2));
|
|
|
|
init[thr_id] = true;
|
|
}
|
|
|
|
uint32_t endiandata[22];
|
|
for (int k=0; k < 22; k++)
|
|
be32enc(&endiandata[k], ((uint32_t*)pdata)[k]);
|
|
|
|
jackpot_keccak512_cpu_setBlock((void*)endiandata, 80);
|
|
cuda_check_cpu_setTarget(ptarget);
|
|
|
|
do {
|
|
int order = 0;
|
|
|
|
// erstes Keccak512 Hash mit CUDA
|
|
jackpot_keccak512_cpu_hash(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
|
|
|
|
size_t nrm1, nrm2, nrm3;
|
|
|
|
// Runde 1 (ohne Gröstl)
|
|
|
|
jackpot_compactTest_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id], NULL,
|
|
d_branch1Nonces[thr_id], &nrm1,
|
|
d_branch3Nonces[thr_id], &nrm3,
|
|
order++);
|
|
|
|
// verfolge den skein-pfad weiter
|
|
quark_skein512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
|
|
|
|
// noch schnell Blake & JH
|
|
jackpot_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id],
|
|
d_branch1Nonces[thr_id], &nrm1,
|
|
d_branch2Nonces[thr_id], &nrm2,
|
|
order++);
|
|
|
|
if (nrm1+nrm2 == nrm3) {
|
|
quark_blake512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++);
|
|
quark_jh512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++);
|
|
}
|
|
|
|
// Runde 3 (komplett)
|
|
|
|
// jackpotNonces in branch1/2 aufsplitten gemäss if (hash[0] & 0x01)
|
|
jackpot_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id],
|
|
d_branch1Nonces[thr_id], &nrm1,
|
|
d_branch2Nonces[thr_id], &nrm2,
|
|
order++);
|
|
|
|
if (nrm1+nrm2 == nrm3) {
|
|
quark_groestl512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++);
|
|
quark_skein512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++);
|
|
}
|
|
|
|
// jackpotNonces in branch1/2 aufsplitten gemäss if (hash[0] & 0x01)
|
|
jackpot_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id],
|
|
d_branch1Nonces[thr_id], &nrm1,
|
|
d_branch2Nonces[thr_id], &nrm2,
|
|
order++);
|
|
|
|
if (nrm1+nrm2 == nrm3) {
|
|
quark_blake512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++);
|
|
quark_jh512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++);
|
|
}
|
|
|
|
// Runde 3 (komplett)
|
|
|
|
// jackpotNonces in branch1/2 aufsplitten gemäss if (hash[0] & 0x01)
|
|
jackpot_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id],
|
|
d_branch1Nonces[thr_id], &nrm1,
|
|
d_branch2Nonces[thr_id], &nrm2,
|
|
order++);
|
|
|
|
if (nrm1+nrm2 == nrm3) {
|
|
quark_groestl512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++);
|
|
quark_skein512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++);
|
|
}
|
|
|
|
// jackpotNonces in branch1/2 aufsplitten gemäss if (hash[0] & 0x01)
|
|
jackpot_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id],
|
|
d_branch1Nonces[thr_id], &nrm1,
|
|
d_branch2Nonces[thr_id], &nrm2,
|
|
order++);
|
|
|
|
if (nrm1+nrm2 == nrm3) {
|
|
quark_blake512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++);
|
|
quark_jh512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++);
|
|
}
|
|
|
|
uint32_t foundNonce = cuda_check_hash_branch(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
|
|
if (foundNonce != 0xffffffff)
|
|
{
|
|
unsigned int rounds;
|
|
uint32_t vhash64[8];
|
|
uint32_t Htarg = ptarget[7];
|
|
be32enc(&endiandata[19], foundNonce);
|
|
|
|
// diese jackpothash Funktion gibt die Zahl der Runden zurück
|
|
rounds = jackpothash(vhash64, endiandata);
|
|
|
|
if (vhash64[7] <= Htarg && fulltest(vhash64, ptarget)) {
|
|
int res = 1;
|
|
uint32_t secNonce = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], 1);
|
|
*hashes_done = pdata[19] - first_nonce + throughput;
|
|
if (secNonce != 0) {
|
|
pdata[21] = secNonce;
|
|
res++;
|
|
}
|
|
pdata[19] = foundNonce;
|
|
return res;
|
|
}
|
|
else {
|
|
applog(LOG_INFO, "GPU #%d: result for nonce $%08X does not validate on CPU (%d rounds)!", thr_id, foundNonce, rounds);
|
|
}
|
|
}
|
|
|
|
if ((uint64_t) pdata[19] + throughput > (uint64_t) max_nonce) {
|
|
pdata[19] = max_nonce;
|
|
break;
|
|
}
|
|
|
|
pdata[19] += throughput;
|
|
|
|
} while (!work_restart[thr_id].restart);
|
|
|
|
*hashes_done = pdata[19] - first_nonce + 1;
|
|
return 0;
|
|
}
|