mirror of https://github.com/GOSTSec/ccminer
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
307 lines
10 KiB
307 lines
10 KiB
#include <cuda.h> |
|
#include "cuda_runtime.h" |
|
#include "device_launch_parameters.h" |
|
|
|
#include <stdio.h> |
|
#include <memory.h> |
|
|
|
// Folgende Definitionen später durch header ersetzen |
|
typedef unsigned char uint8_t; |
|
typedef unsigned int uint32_t; |
|
typedef unsigned long long uint64_t; |
|
|
|
// globaler Speicher für alle HeftyHashes aller Threads |
|
extern uint32_t *d_heftyHashes[8]; |
|
extern uint32_t *d_nonceVector[8]; |
|
|
|
// globaler Speicher für unsere Ergebnisse |
|
uint32_t *d_hash5output[8]; |
|
|
|
// die Message (116 Bytes) mit Padding zur Berechnung auf der GPU |
|
__constant__ uint64_t c_PaddedMessage[16]; // padded message (84+32 bytes + padding) |
|
|
|
// ---------------------------- BEGIN CUDA blake512 functions ------------------------------------ |
|
|
|
__constant__ uint8_t c_sigma[16][16]; |
|
|
|
const uint8_t host_sigma[16][16] = |
|
{ |
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
|
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, |
|
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, |
|
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, |
|
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, |
|
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, |
|
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, |
|
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, |
|
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, |
|
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, |
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
|
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, |
|
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, |
|
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, |
|
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, |
|
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } |
|
}; |
|
|
|
#define SWAP32(x) \ |
|
((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | \ |
|
(((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu)) |
|
|
|
#define SWAP64(x) \ |
|
((uint64_t)((((uint64_t)(x) & 0xff00000000000000ULL) >> 56) | \ |
|
(((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \ |
|
(((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24) | \ |
|
(((uint64_t)(x) & 0x000000ff00000000ULL) >> 8) | \ |
|
(((uint64_t)(x) & 0x00000000ff000000ULL) << 8) | \ |
|
(((uint64_t)(x) & 0x0000000000ff0000ULL) << 24) | \ |
|
(((uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \ |
|
(((uint64_t)(x) & 0x00000000000000ffULL) << 56))) |
|
|
|
__constant__ uint64_t c_SecondRound[16]; |
|
|
|
const uint64_t host_SecondRound[16] = |
|
{ |
|
0,0,0,0,0,0,0,0,0,0,0,0,0,SWAP64(1),0,SWAP64(0x3A0) |
|
}; |
|
|
|
__constant__ uint64_t c_u512[16]; |
|
|
|
const uint64_t host_u512[16] = |
|
{ |
|
0x243f6a8885a308d3ULL, 0x13198a2e03707344ULL, |
|
0xa4093822299f31d0ULL, 0x082efa98ec4e6c89ULL, |
|
0x452821e638d01377ULL, 0xbe5466cf34e90c6cULL, |
|
0xc0ac29b7c97c50ddULL, 0x3f84d5b5b5470917ULL, |
|
0x9216d5d98979fb1bULL, 0xd1310ba698dfb5acULL, |
|
0x2ffd72dbd01adfb7ULL, 0xb8e1afed6a267e96ULL, |
|
0xba7c9045f12c7f99ULL, 0x24a19947b3916cf7ULL, |
|
0x0801f2e2858efc16ULL, 0x636920d871574e69ULL |
|
}; |
|
|
|
|
|
#define ROTR(x,n) (((x)<<(64-n))|( (x)>>(n))) |
|
|
|
#define G(a,b,c,d,e) \ |
|
v[a] += (m[sigma[i][e]] ^ u512[sigma[i][e+1]]) + v[b];\ |
|
v[d] = ROTR( v[d] ^ v[a],32); \ |
|
v[c] += v[d]; \ |
|
v[b] = ROTR( v[b] ^ v[c],25); \ |
|
v[a] += (m[sigma[i][e+1]] ^ u512[sigma[i][e]])+v[b]; \ |
|
v[d] = ROTR( v[d] ^ v[a],16); \ |
|
v[c] += v[d]; \ |
|
v[b] = ROTR( v[b] ^ v[c],11); |
|
|
|
__device__ void blake512_compress( uint64_t *h, const uint64_t *block, int nullt, const uint8_t ((*sigma)[16]), const uint64_t *u512 ) |
|
{ |
|
uint64_t v[16], m[16], i; |
|
|
|
#pragma unroll 16 |
|
for( i = 0; i < 16; ++i ) m[i] = SWAP64(block[i]); |
|
|
|
#pragma unroll 8 |
|
for( i = 0; i < 8; ++i ) v[i] = h[i]; |
|
|
|
v[ 8] = u512[0]; |
|
v[ 9] = u512[1]; |
|
v[10] = u512[2]; |
|
v[11] = u512[3]; |
|
v[12] = u512[4]; |
|
v[13] = u512[5]; |
|
v[14] = u512[6]; |
|
v[15] = u512[7]; |
|
|
|
/* don't xor t when the block is only padding */ |
|
if ( !nullt ) { |
|
v[12] ^= 928; |
|
v[13] ^= 928; |
|
} |
|
|
|
#pragma unroll 16 |
|
for( i = 0; i < 16; ++i ) |
|
{ |
|
/* column step */ |
|
G( 0, 4, 8, 12, 0 ); |
|
G( 1, 5, 9, 13, 2 ); |
|
G( 2, 6, 10, 14, 4 ); |
|
G( 3, 7, 11, 15, 6 ); |
|
/* diagonal step */ |
|
G( 0, 5, 10, 15, 8 ); |
|
G( 1, 6, 11, 12, 10 ); |
|
G( 2, 7, 8, 13, 12 ); |
|
G( 3, 4, 9, 14, 14 ); |
|
} |
|
|
|
#pragma unroll 16 |
|
for( i = 0; i < 16; ++i ) h[i % 8] ^= v[i]; |
|
} |
|
|
|
// Endian Drehung für 32 Bit Typen |
|
static __device__ uint32_t cuda_swab32(uint32_t x) |
|
{ |
|
return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u) |
|
| ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu)); |
|
} |
|
|
|
// Endian Drehung für 64 Bit Typen |
|
static __device__ uint64_t cuda_swab64(uint64_t x) { |
|
uint32_t h = (x >> 32); |
|
uint32_t l = (x & 0xFFFFFFFFULL); |
|
return (((uint64_t)cuda_swab32(l)) << 32) | ((uint64_t)cuda_swab32(h)); |
|
} |
|
|
|
// das Hi Word aus einem 64 Bit Typen extrahieren |
|
static __device__ uint32_t HIWORD(const uint64_t &x) { |
|
#if __CUDA_ARCH__ >= 130 |
|
return (uint32_t)__double2hiint(__longlong_as_double(x)); |
|
#else |
|
return (uint32_t)(x >> 32); |
|
#endif |
|
} |
|
|
|
// das Hi Word in einem 64 Bit Typen ersetzen |
|
static __device__ uint64_t REPLACE_HIWORD(const uint64_t &x, const uint32_t &y) { |
|
return (x & 0xFFFFFFFFULL) | (((uint64_t)y) << 32ULL); |
|
} |
|
|
|
// das Lo Word aus einem 64 Bit Typen extrahieren |
|
static __device__ uint32_t LOWORD(const uint64_t &x) { |
|
#if __CUDA_ARCH__ >= 130 |
|
return (uint32_t)__double2loint(__longlong_as_double(x)); |
|
#else |
|
return (uint32_t)(x & 0xFFFFFFFFULL); |
|
#endif |
|
} |
|
|
|
// das Lo Word in einem 64 Bit Typen ersetzen |
|
static __device__ uint64_t REPLACE_LOWORD(const uint64_t &x, const uint32_t &y) { |
|
return (x & 0xFFFFFFFF00000000ULL) | ((uint64_t)y); |
|
} |
|
|
|
__global__ void blake512_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *heftyHashes, uint32_t *nonceVector) |
|
{ |
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
if (thread < threads) |
|
{ |
|
// bestimme den aktuellen Zähler |
|
//uint32_t nounce = startNounce + thread; |
|
uint32_t nounce = nonceVector[thread]; |
|
|
|
// Index-Position des Hashes in den Hash Puffern bestimmen (Hefty1 und outputHash) |
|
uint32_t hashPosition = nounce - startNounce; |
|
|
|
// State vorbereiten |
|
uint64_t h[8]; |
|
h[0] = 0x6a09e667f3bcc908ULL; |
|
h[1] = 0xbb67ae8584caa73bULL; |
|
h[2] = 0x3c6ef372fe94f82bULL; |
|
h[3] = 0xa54ff53a5f1d36f1ULL; |
|
h[4] = 0x510e527fade682d1ULL; |
|
h[5] = 0x9b05688c2b3e6c1fULL; |
|
h[6] = 0x1f83d9abfb41bd6bULL; |
|
h[7] = 0x5be0cd19137e2179ULL; |
|
|
|
// 128 Byte für die Message |
|
uint64_t buf[16]; |
|
|
|
// Message für die erste Runde in Register holen |
|
#pragma unroll 16 |
|
for (int i=0; i < 16; ++i) buf[i] = c_PaddedMessage[i]; |
|
|
|
// die Nounce durch die thread-spezifische ersetzen |
|
buf[9] = REPLACE_HIWORD(buf[9], nounce); |
|
|
|
// den thread-spezifischen Hefty1 hash einsetzen |
|
uint32_t *hefty = heftyHashes + 8 * hashPosition; |
|
buf[10] = REPLACE_HIWORD(buf[10], hefty[0]); |
|
buf[11] = REPLACE_LOWORD(buf[11], hefty[1]); |
|
buf[11] = REPLACE_HIWORD(buf[11], hefty[2]); |
|
buf[12] = REPLACE_LOWORD(buf[12], hefty[3]); |
|
buf[12] = REPLACE_HIWORD(buf[12], hefty[4]); |
|
buf[13] = REPLACE_LOWORD(buf[13], hefty[5]); |
|
buf[13] = REPLACE_HIWORD(buf[13], hefty[6]); |
|
buf[14] = REPLACE_LOWORD(buf[14], hefty[7]); |
|
|
|
// erste Runde |
|
blake512_compress( h, buf, 0, c_sigma, c_u512 ); |
|
|
|
// zweite Runde |
|
#pragma unroll 16 |
|
for (int i=0; i < 16; ++i) buf[i] = c_SecondRound[i]; |
|
blake512_compress( h, buf, 1, c_sigma, c_u512 ); |
|
|
|
// Hash rauslassen |
|
#if 0 |
|
// ausschliesslich 32 bit Operationen sofern die SM1.3 double intrinsics verfügbar sind |
|
uint32_t *outHash = (uint32_t *)outputHash + 16 * hashPosition; |
|
#pragma unroll 8 |
|
for (int i=0; i < 8; ++i) { |
|
outHash[2*i+0] = cuda_swab32( HIWORD(h[i]) ); |
|
outHash[2*i+1] = cuda_swab32( LOWORD(h[i]) ); |
|
} |
|
#else |
|
// in dieser Version passieren auch ein paar 64 Bit Shifts |
|
uint64_t *outHash = (uint64_t *)outputHash + 8 * hashPosition; |
|
#pragma unroll 8 |
|
for (int i=0; i < 8; ++i) outHash[i] = cuda_swab64( h[i] ); |
|
#endif |
|
} |
|
} |
|
|
|
|
|
// ---------------------------- END CUDA blake512 functions ------------------------------------ |
|
|
|
// Setup-Funktionen |
|
__host__ void blake512_cpu_init(int thr_id, int threads) |
|
{ |
|
// Kopiere die Hash-Tabellen in den GPU-Speicher |
|
cudaMemcpyToSymbol( c_sigma, |
|
host_sigma, |
|
sizeof(host_sigma), |
|
0, cudaMemcpyHostToDevice); |
|
|
|
cudaMemcpyToSymbol( c_u512, |
|
host_u512, |
|
sizeof(host_u512), |
|
0, cudaMemcpyHostToDevice); |
|
|
|
cudaMemcpyToSymbol( c_SecondRound, |
|
host_SecondRound, |
|
sizeof(host_SecondRound), |
|
0, cudaMemcpyHostToDevice); |
|
|
|
// Speicher für alle Ergebnisse belegen |
|
cudaMalloc(&d_hash5output[thr_id], 16 * sizeof(uint32_t) * threads); |
|
} |
|
|
|
__host__ void blake512_cpu_setBlock(void *pdata) |
|
// data muss 84-Byte haben! |
|
// heftyHash hat 32-Byte |
|
{ |
|
// Message mit Padding für erste Runde bereitstellen |
|
unsigned char PaddedMessage[128]; |
|
memcpy(PaddedMessage, pdata, 84); |
|
memset(PaddedMessage+84, 0, 32); // leeres Hefty Hash einfüllen |
|
memset(PaddedMessage+116, 0, 12); |
|
PaddedMessage[116] = 0x80; |
|
|
|
// die Message (116 Bytes) ohne Padding zur Berechnung auf der GPU |
|
cudaMemcpyToSymbol( c_PaddedMessage, PaddedMessage, 16*sizeof(uint64_t), 0, cudaMemcpyHostToDevice); |
|
} |
|
|
|
|
|
__host__ void blake512_cpu_hash(int thr_id, int threads, uint32_t startNounce) |
|
{ |
|
const int threadsperblock = 128; |
|
|
|
// berechne wie viele Thread Blocks wir brauchen |
|
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
|
dim3 block(threadsperblock); |
|
|
|
// Größe des dynamischen Shared Memory Bereichs (abhängig von der Threadanzahl) |
|
size_t shared_size = 0; |
|
|
|
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); |
|
|
|
blake512_gpu_hash<<<grid, block, shared_size>>>(threads, startNounce, d_hash5output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]); |
|
}
|
|
|