1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-25 05:54:24 +00:00
ccminer/quark/cuda_quark_blake512.cu
Tanguy Pruvot d9ea5f72ce Remove duplicated defines present in cuda_helper.h
also add cudaDeviceReset() on Ctrl+C for nvprof
2014-08-19 03:29:11 +02:00

306 lines
9.0 KiB
Plaintext
Raw Blame History

#include <stdio.h>
#include <memory.h>
#include "cuda_helper.h"
#define ROTR(x,n) ROTR64(x,n)
#define USE_SHUFFLE 0
// aus heavy.cu
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
// die Message it Padding zur Berechnung auf der GPU
__constant__ uint64_t c_PaddedMessage80[16]; // padded message (80 bytes + padding)
// ---------------------------- BEGIN CUDA quark_blake512 functions ------------------------------------
__constant__ uint8_t c_sigma[16][16];
const uint8_t host_sigma[16][16] =
{
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
};
__device__ __constant__
const uint64_t c_u512[16] =
{
0x243f6a8885a308d3ULL, 0x13198a2e03707344ULL,
0xa4093822299f31d0ULL, 0x082efa98ec4e6c89ULL,
0x452821e638d01377ULL, 0xbe5466cf34e90c6cULL,
0xc0ac29b7c97c50ddULL, 0x3f84d5b5b5470917ULL,
0x9216d5d98979fb1bULL, 0xd1310ba698dfb5acULL,
0x2ffd72dbd01adfb7ULL, 0xb8e1afed6a267e96ULL,
0xba7c9045f12c7f99ULL, 0x24a19947b3916cf7ULL,
0x0801f2e2858efc16ULL, 0x636920d871574e69ULL
};
#define G(a,b,c,d,e) \
v[a] += (m[sigma[i][e]] ^ u512[sigma[i][e+1]]) + v[b];\
v[d] = ROTR( v[d] ^ v[a],32); \
v[c] += v[d]; \
v[b] = ROTR( v[b] ^ v[c],25); \
v[a] += (m[sigma[i][e+1]] ^ u512[sigma[i][e]])+v[b]; \
v[d] = ROTR( v[d] ^ v[a],16); \
v[c] += v[d]; \
v[b] = ROTR( v[b] ^ v[c],11);
__device__ static
void quark_blake512_compress( uint64_t *h, const uint64_t *block, const uint8_t ((*sigma)[16]), const uint64_t *u512, const int bits )
{
uint64_t v[16], m[16], i;
#pragma unroll 16
for( i = 0; i < 16; ++i ) {
m[i] = cuda_swab64(block[i]);
}
#pragma unroll 8
for( i = 0; i < 8; ++i ) v[i] = h[i];
v[ 8] = u512[0];
v[ 9] = u512[1];
v[10] = u512[2];
v[11] = u512[3];
v[12] = u512[4];
v[13] = u512[5];
v[14] = u512[6];
v[15] = u512[7];
v[12] ^= bits;
v[13] ^= bits;
//#pragma unroll 16
for( i = 0; i < 16; ++i )
{
/* column step */
G( 0, 4, 8, 12, 0 );
G( 1, 5, 9, 13, 2 );
G( 2, 6, 10, 14, 4 );
G( 3, 7, 11, 15, 6 );
/* diagonal step */
G( 0, 5, 10, 15, 8 );
G( 1, 6, 11, 12, 10 );
G( 2, 7, 8, 13, 12 );
G( 3, 4, 9, 14, 14 );
}
#pragma unroll 16
for( i = 0; i < 16; ++i ) h[i % 8] ^= v[i];
}
__device__ __constant__
static const uint64_t d_constMem[8] = {
0x6a09e667f3bcc908ULL,
0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL,
0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL,
0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL,
0x5be0cd19137e2179ULL };
// Hash-Padding
__device__ __constant__
static const uint64_t d_constHashPadding[8] = {
0x0000000000000080ull,
0,
0,
0,
0,
0x0100000000000000ull,
0,
0x0002000000000000ull };
__global__ __launch_bounds__(256, 4)
void quark_blake512_gpu_hash_64(int threads, uint32_t startNounce, uint32_t *g_nonceVector, uint64_t *g_hash)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
#if USE_SHUFFLE
const int warpID = threadIdx.x & 0x0F; // 16 warps
const int warpBlockID = (thread + 15)>>4; // aufrunden auf volle Warp-Bl<42>cke
const int maxHashPosition = thread<<3;
#endif
#if USE_SHUFFLE
if (warpBlockID < ( (threads+15)>>4 ))
#else
if (thread < threads)
#endif
{
uint8_t i;
// bestimme den aktuellen Z<>hler
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
int hashPosition = nounce - startNounce;
uint64_t *inpHash = &g_hash[hashPosition<<3]; // hashPosition * 8
// 128 Byte f<>r die Message
uint64_t buf[16];
// State vorbereiten
uint64_t h[8];
#pragma unroll 8
for (i=0;i<8;i++)
h[i] = d_constMem[i];
// Message f<>r die erste Runde in Register holen
#pragma unroll 8
for (i=0; i < 8; ++i)
buf[i] = inpHash[i];
#pragma unroll 8
for (i=0; i < 8; i++)
buf[i+8] = d_constHashPadding[i];
// die einzige Hashing-Runde
quark_blake512_compress( h, buf, c_sigma, c_u512, 512 );
#if __CUDA_ARCH__ >= 130
// ausschliesslich 32 bit Operationen sofern die SM1.3 double intrinsics verf<72>gbar sind
uint32_t *outHash = (uint32_t*)&g_hash[8 * hashPosition];
#pragma unroll 8
for (i=0; i < 8; ++i) {
outHash[2*i+0] = cuda_swab32( _HIWORD(h[i]) );
outHash[2*i+1] = cuda_swab32( _LOWORD(h[i]) );
}
#else
// in dieser Version passieren auch ein paar 64 Bit Shifts
uint64_t *outHash = &g_hash[8 * hashPosition];
#pragma unroll 8
for (i=0; i < 8; ++i)
{
outHash[i] = cuda_swab64(h[i]);
}
#endif
}
}
__global__ void quark_blake512_gpu_hash_80(int threads, uint32_t startNounce, void *outputHash)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
// State vorbereiten
uint64_t h[8];
// 128 Byte f<>r die Message
uint64_t buf[16];
uint8_t i;
// bestimme den aktuellen Z<>hler
uint32_t nounce = startNounce + thread;
#pragma unroll 8
for(i=0;i<8;i++)
h[i] = d_constMem[i];
// Message f<>r die erste Runde in Register holen
#pragma unroll 16
for (i=0; i < 16; ++i) buf[i] = c_PaddedMessage80[i];
// die Nounce durch die thread-spezifische ersetzen
buf[9] = REPLACE_HIWORD(buf[9], cuda_swab32(nounce));
// die einzige Hashing-Runde
quark_blake512_compress( h, buf, c_sigma, c_u512, 640 );
// Hash rauslassen
#if __CUDA_ARCH__ >= 130
// ausschliesslich 32 bit Operationen sofern die SM1.3 double intrinsics verf<72>gbar sind
uint32_t *outHash = (uint32_t *)outputHash + 16 * thread;
#pragma unroll 8
for (i=0; i < 8; ++i) {
outHash[2*i+0] = cuda_swab32( _HIWORD(h[i]) );
outHash[2*i+1] = cuda_swab32( _LOWORD(h[i]) );
}
#else
// in dieser Version passieren auch ein paar 64 Bit Shifts
uint64_t *outHash = (uint64_t *)outputHash + 8 * thread;
#pragma unroll 8
for (i=0; i < 8; ++i) {
outHash[i] = cuda_swab64( h[i] );
}
#endif
}
}
// ---------------------------- END CUDA quark_blake512 functions ------------------------------------
// Setup-Funktionen
__host__ void quark_blake512_cpu_init(int thr_id, int threads)
{
// Kopiere die Hash-Tabellen in den GPU-Speicher
cudaMemcpyToSymbol( c_sigma,
host_sigma,
sizeof(host_sigma),
0, cudaMemcpyHostToDevice);
}
// Blake512 f<>r 80 Byte grosse Eingangsdaten
__host__ void quark_blake512_cpu_setBlock_80(void *pdata)
{
// Message mit Padding bereitstellen
// lediglich die korrekte Nonce ist noch ab Byte 76 einzusetzen.
unsigned char PaddedMessage[128];
memcpy(PaddedMessage, pdata, 80);
memset(PaddedMessage+80, 0, 48);
PaddedMessage[80] = 0x80;
PaddedMessage[111] = 1;
PaddedMessage[126] = 0x02;
PaddedMessage[127] = 0x80;
// die Message zur Berechnung auf der GPU
cudaMemcpyToSymbol( c_PaddedMessage80, PaddedMessage, 16*sizeof(uint64_t), 0, cudaMemcpyHostToDevice);
}
__host__ void quark_blake512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_outputHash, int order)
{
const int threadsperblock = 256;
// berechne wie viele Thread Blocks wir brauchen
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
// Gr<47><72>e des dynamischen Shared Memory Bereichs
size_t shared_size = 0;
quark_blake512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, d_nonceVector, (uint64_t*)d_outputHash);
// Strategisches Sleep Kommando zur Senkung der CPU Last
MyStreamSynchronize(NULL, order, thr_id);
}
__host__ void quark_blake512_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, uint32_t *d_outputHash, int order)
{
const int threadsperblock = 256;
// berechne wie viele Thread Blocks wir brauchen
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
// Gr<47><72>e des dynamischen Shared Memory Bereichs
size_t shared_size = 0;
quark_blake512_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNounce, d_outputHash);
// Strategisches Sleep Kommando zur Senkung der CPU Last
MyStreamSynchronize(NULL, order, thr_id);
}