1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-09 22:38:05 +00:00
ccminer/quark/quarkcoin.cu
Tanguy Pruvot c66e8622b3 api: report per thread cpu hash checks (ACC/REJ)
+ update all algos for that...
2017-02-07 06:26:02 +01:00

340 lines
11 KiB
Plaintext

extern "C"
{
#include "sph/sph_blake.h"
#include "sph/sph_bmw.h"
#include "sph/sph_groestl.h"
#include "sph/sph_skein.h"
#include "sph/sph_jh.h"
#include "sph/sph_keccak.h"
}
#include "miner.h"
#include "cuda_helper.h"
#include "cuda_quark.h"
#include <stdio.h>
extern uint32_t quark_filter_cpu_sm2(const int thr_id, const uint32_t threads, const uint32_t *inpHashes, uint32_t* d_branch2);
extern void quark_merge_cpu_sm2(const int thr_id, const uint32_t threads, uint32_t *outpHashes, uint32_t* d_branch2);
static uint32_t *d_hash[MAX_GPUS];
static uint32_t* d_hash_br2[MAX_GPUS]; // SM 2
// Speicher zur Generierung der Noncevektoren für die bedingten Hashes
static uint32_t *d_branch1Nonces[MAX_GPUS];
static uint32_t *d_branch2Nonces[MAX_GPUS];
static uint32_t *d_branch3Nonces[MAX_GPUS];
// Original Quarkhash Funktion aus einem miner Quelltext
extern "C" void quarkhash(void *state, const void *input)
{
unsigned char _ALIGN(128) hash[64];
sph_blake512_context ctx_blake;
sph_bmw512_context ctx_bmw;
sph_groestl512_context ctx_groestl;
sph_jh512_context ctx_jh;
sph_keccak512_context ctx_keccak;
sph_skein512_context ctx_skein;
sph_blake512_init(&ctx_blake);
sph_blake512 (&ctx_blake, input, 80);
sph_blake512_close(&ctx_blake, (void*) hash);
sph_bmw512_init(&ctx_bmw);
sph_bmw512 (&ctx_bmw, (const void*) hash, 64);
sph_bmw512_close(&ctx_bmw, (void*) hash);
if (hash[0] & 0x8)
{
sph_groestl512_init(&ctx_groestl);
sph_groestl512 (&ctx_groestl, (const void*) hash, 64);
sph_groestl512_close(&ctx_groestl, (void*) hash);
}
else
{
sph_skein512_init(&ctx_skein);
sph_skein512 (&ctx_skein, (const void*) hash, 64);
sph_skein512_close(&ctx_skein, (void*) hash);
}
sph_groestl512_init(&ctx_groestl);
sph_groestl512 (&ctx_groestl, (const void*) hash, 64);
sph_groestl512_close(&ctx_groestl, (void*) hash);
sph_jh512_init(&ctx_jh);
sph_jh512 (&ctx_jh, (const void*) hash, 64);
sph_jh512_close(&ctx_jh, (void*) hash);
if (hash[0] & 0x8)
{
sph_blake512_init(&ctx_blake);
sph_blake512 (&ctx_blake, (const void*) hash, 64);
sph_blake512_close(&ctx_blake, (void*) hash);
}
else
{
sph_bmw512_init(&ctx_bmw);
sph_bmw512 (&ctx_bmw, (const void*) hash, 64);
sph_bmw512_close(&ctx_bmw, (void*) hash);
}
sph_keccak512_init(&ctx_keccak);
sph_keccak512 (&ctx_keccak, (const void*) hash, 64);
sph_keccak512_close(&ctx_keccak, (void*) hash);
sph_skein512_init(&ctx_skein);
sph_skein512 (&ctx_skein, (const void*) hash, 64);
sph_skein512_close(&ctx_skein, (void*) hash);
if (hash[0] & 0x8)
{
sph_keccak512_init(&ctx_keccak);
sph_keccak512 (&ctx_keccak, (const void*) hash, 64);
sph_keccak512_close(&ctx_keccak, (void*) hash);
}
else
{
sph_jh512_init(&ctx_jh);
sph_jh512 (&ctx_jh, (const void*) hash, 64);
sph_jh512_close(&ctx_jh, (void*) hash);
}
memcpy(state, hash, 32);
}
#ifdef _DEBUG
#define TRACE(algo) { \
if (max_nonce == 1 && pdata[19] <= 1) { \
uint32_t* debugbuf = NULL; \
cudaMallocHost(&debugbuf, 32); \
cudaMemcpy(debugbuf, d_hash[thr_id], 32, cudaMemcpyDeviceToHost); \
printf("quark %s %08x %08x %08x %08x...%08x... \n", algo, swab32(debugbuf[0]), swab32(debugbuf[1]), \
swab32(debugbuf[2]), swab32(debugbuf[3]), swab32(debugbuf[7])); \
cudaFreeHost(debugbuf); \
} \
}
#else
#define TRACE(algo) {}
#endif
static bool init[MAX_GPUS] = { 0 };
extern "C" int scanhash_quark(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done)
{
uint32_t _ALIGN(64) endiandata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
int dev_id = device_map[thr_id];
uint32_t def_thr = 1U << 20; // 256*4096
uint32_t throughput = cuda_default_throughput(thr_id, def_thr);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
if (opt_benchmark)
ptarget[7] = 0x00F;
if (!init[thr_id])
{
cudaSetDevice(dev_id);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
CUDA_LOG_ERROR();
}
gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput);
cudaGetLastError();
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput));
quark_blake512_cpu_init(thr_id, throughput);
quark_groestl512_cpu_init(thr_id, throughput);
quark_skein512_cpu_init(thr_id, throughput);
quark_bmw512_cpu_init(thr_id, throughput);
quark_keccak512_cpu_init(thr_id, throughput);
quark_jh512_cpu_init(thr_id, throughput);
quark_compactTest_cpu_init(thr_id, throughput);
if (cuda_arch[dev_id] >= 300) {
cudaMalloc(&d_branch1Nonces[thr_id], sizeof(uint32_t)*throughput);
cudaMalloc(&d_branch2Nonces[thr_id], sizeof(uint32_t)*throughput);
cudaMalloc(&d_branch3Nonces[thr_id], sizeof(uint32_t)*throughput);
} else {
cudaMalloc(&d_hash_br2[thr_id], (size_t) 64 * throughput);
}
cuda_check_cpu_init(thr_id, throughput);
CUDA_SAFE_CALL(cudaGetLastError());
init[thr_id] = true;
}
for (int k=0; k < 20; k++)
be32enc(&endiandata[k], pdata[k]);
quark_blake512_cpu_setBlock_80(thr_id, endiandata);
cuda_check_cpu_setTarget(ptarget);
do {
int order = 0;
uint32_t nrm1=0, nrm2=0, nrm3=0;
quark_blake512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id]); order++;
TRACE("blake :");
quark_bmw512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("bmw :");
if (cuda_arch[dev_id] >= 300) {
quark_compactTest_single_false_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id], NULL,
d_branch3Nonces[thr_id], &nrm3, order++);
// nur den Skein Branch weiterverfolgen
quark_skein512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
// das ist der unbedingte Branch für Groestl512
quark_groestl512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
// das ist der unbedingte Branch für JH512
quark_jh512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
// quarkNonces in branch1 und branch2 aufsplitten gemäss if (hash[0] & 0x8)
quark_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id],
d_branch1Nonces[thr_id], &nrm1,
d_branch2Nonces[thr_id], &nrm2,
order++);
// das ist der bedingte Branch für Blake512
quark_blake512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++);
// das ist der bedingte Branch für Bmw512
quark_bmw512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++);
// das ist der unbedingte Branch für Keccak512
quark_keccak512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
// das ist der unbedingte Branch für Skein512
quark_skein512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
// quarkNonces in branch1 und branch2 aufsplitten gemäss if (hash[0] & 0x8)
quark_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id],
d_branch1Nonces[thr_id], &nrm1,
d_branch2Nonces[thr_id], &nrm2,
order++);
quark_keccak512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++);
quark_jh512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++);
work->nonces[0] = cuda_check_hash_branch(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++);
work->nonces[1] = 0;
} else {
/* algo permutations are made with 2 different buffers */
quark_filter_cpu_sm2(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash_br2[thr_id], order++);
quark_merge_cpu_sm2(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
TRACE("perm1 :");
quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("groestl:");
quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("jh512 :");
quark_filter_cpu_sm2(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
quark_blake512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
quark_bmw512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash_br2[thr_id], order++);
quark_merge_cpu_sm2(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
TRACE("perm2 :");
quark_keccak512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("keccak :");
quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
TRACE("skein :");
quark_filter_cpu_sm2(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
quark_keccak512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash_br2[thr_id], order++);
quark_merge_cpu_sm2(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
TRACE("perm3 :");
CUDA_LOG_ERROR();
work->nonces[0] = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]);
work->nonces[1] = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], 1);
}
*hashes_done = pdata[19] - first_nonce + throughput;
if (work->nonces[0] != UINT32_MAX)
{
uint32_t _ALIGN(64) vhash[8];
be32enc(&endiandata[19], work->nonces[0]);
quarkhash(vhash, endiandata);
if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) {
work->valid_nonces = 1;
work_set_target_ratio(work, vhash);
if (work->nonces[1] != 0) {
be32enc(&endiandata[19], work->nonces[1]);
quarkhash(vhash, endiandata);
bn_set_target_ratio(work, vhash, 1);
work->valid_nonces++;
pdata[19] = max(work->nonces[0], work->nonces[1]) + 1;
} else {
pdata[19] = work->nonces[0] + 1; // cursor
}
return work->valid_nonces;
}
else if (vhash[7] > ptarget[7]) {
gpu_increment_reject(thr_id);
if (!opt_quiet)
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", work->nonces[0]);
pdata[19] = work->nonces[0] + 1;
continue;
}
}
if ((uint64_t) throughput + pdata[19] >= max_nonce) {
pdata[19] = max_nonce;
break;
}
pdata[19] += throughput;
} while (!work_restart[thr_id].restart);
return 0;
}
// cleanup
extern "C" void free_quark(int thr_id)
{
int dev_id = device_map[thr_id];
if (!init[thr_id])
return;
cudaThreadSynchronize();
cudaFree(d_hash[thr_id]);
if (cuda_arch[dev_id] >= 300) {
cudaFree(d_branch1Nonces[thr_id]);
cudaFree(d_branch2Nonces[thr_id]);
cudaFree(d_branch3Nonces[thr_id]);
} else {
cudaFree(d_hash_br2[thr_id]);
}
quark_blake512_cpu_free(thr_id);
quark_groestl512_cpu_free(thr_id);
quark_compactTest_cpu_free(thr_id);
cuda_check_cpu_free(thr_id);
init[thr_id] = false;
cudaDeviceSynchronize();
}