|
|
#include <stdio.h> |
|
|
#include <memory.h> |
|
|
|
|
|
#include "cuda_helper.h" |
|
|
|
|
|
#define ROTR(x,n) ROTR64(x,n) |
|
|
|
|
|
#define USE_SHUFFLE 0 |
|
|
|
|
|
// aus heavy.cu |
|
|
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); |
|
|
|
|
|
// die Message it Padding zur Berechnung auf der GPU |
|
|
__constant__ uint64_t c_PaddedMessage80[16]; // padded message (80 bytes + padding) |
|
|
|
|
|
// ---------------------------- BEGIN CUDA quark_blake512 functions ------------------------------------ |
|
|
|
|
|
__constant__ uint8_t c_sigma[16][16]; |
|
|
|
|
|
const uint8_t host_sigma[16][16] = |
|
|
{ |
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
|
|
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, |
|
|
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, |
|
|
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, |
|
|
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, |
|
|
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, |
|
|
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, |
|
|
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, |
|
|
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, |
|
|
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, |
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
|
|
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, |
|
|
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, |
|
|
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, |
|
|
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, |
|
|
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } |
|
|
}; |
|
|
|
|
|
__device__ __constant__ |
|
|
const uint64_t c_u512[16] = |
|
|
{ |
|
|
0x243f6a8885a308d3ULL, 0x13198a2e03707344ULL, |
|
|
0xa4093822299f31d0ULL, 0x082efa98ec4e6c89ULL, |
|
|
0x452821e638d01377ULL, 0xbe5466cf34e90c6cULL, |
|
|
0xc0ac29b7c97c50ddULL, 0x3f84d5b5b5470917ULL, |
|
|
0x9216d5d98979fb1bULL, 0xd1310ba698dfb5acULL, |
|
|
0x2ffd72dbd01adfb7ULL, 0xb8e1afed6a267e96ULL, |
|
|
0xba7c9045f12c7f99ULL, 0x24a19947b3916cf7ULL, |
|
|
0x0801f2e2858efc16ULL, 0x636920d871574e69ULL |
|
|
}; |
|
|
|
|
|
#define G(a,b,c,d,x) { \ |
|
|
uint32_t idx1 = sigma[i][x]; \ |
|
|
uint32_t idx2 = sigma[i][x+1]; \ |
|
|
v[a] += (m[idx1] ^ u512[idx2]) + v[b]; \ |
|
|
v[d] = ROTR( v[d] ^ v[a], 32); \ |
|
|
v[c] += v[d]; \ |
|
|
v[b] = ROTR( v[b] ^ v[c], 25); \ |
|
|
v[a] += (m[idx2] ^ u512[idx1]) + v[b]; \ |
|
|
v[d] = ROTR( v[d] ^ v[a], 16); \ |
|
|
v[c] += v[d]; \ |
|
|
v[b] = ROTR( v[b] ^ v[c], 11); \ |
|
|
} |
|
|
|
|
|
__device__ static |
|
|
void quark_blake512_compress( uint64_t *h, const uint64_t *block, const uint8_t ((*sigma)[16]), const uint64_t *u512, const int T0) |
|
|
{ |
|
|
uint64_t v[16], m[16], i; |
|
|
|
|
|
#pragma unroll 16 |
|
|
for( i = 0; i < 16; i++) { |
|
|
m[i] = cuda_swab64(block[i]); |
|
|
} |
|
|
|
|
|
#pragma unroll 8 |
|
|
for (i = 0; i < 8; i++) |
|
|
v[i] = h[i]; |
|
|
|
|
|
v[ 8] = u512[0]; |
|
|
v[ 9] = u512[1]; |
|
|
v[10] = u512[2]; |
|
|
v[11] = u512[3]; |
|
|
v[12] = u512[4] ^ T0; |
|
|
v[13] = u512[5] ^ T0; |
|
|
v[14] = u512[6]; |
|
|
v[15] = u512[7]; |
|
|
|
|
|
//#pragma unroll 16 |
|
|
for( i = 0; i < 16; ++i ) |
|
|
{ |
|
|
/* column step */ |
|
|
G( 0, 4, 8, 12, 0 ); |
|
|
G( 1, 5, 9, 13, 2 ); |
|
|
G( 2, 6, 10, 14, 4 ); |
|
|
G( 3, 7, 11, 15, 6 ); |
|
|
/* diagonal step */ |
|
|
G( 0, 5, 10, 15, 8 ); |
|
|
G( 1, 6, 11, 12, 10 ); |
|
|
G( 2, 7, 8, 13, 12 ); |
|
|
G( 3, 4, 9, 14, 14 ); |
|
|
} |
|
|
|
|
|
#pragma unroll 16 |
|
|
for( i = 0; i < 16; ++i ) |
|
|
h[i % 8] ^= v[i]; |
|
|
} |
|
|
|
|
|
__device__ __constant__ |
|
|
static const uint64_t d_constMem[8] = { |
|
|
0x6a09e667f3bcc908ULL, |
|
|
0xbb67ae8584caa73bULL, |
|
|
0x3c6ef372fe94f82bULL, |
|
|
0xa54ff53a5f1d36f1ULL, |
|
|
0x510e527fade682d1ULL, |
|
|
0x9b05688c2b3e6c1fULL, |
|
|
0x1f83d9abfb41bd6bULL, |
|
|
0x5be0cd19137e2179ULL |
|
|
}; |
|
|
|
|
|
// Hash-Padding |
|
|
__device__ __constant__ |
|
|
static const uint64_t d_constHashPadding[8] = { |
|
|
0x0000000000000080ull, |
|
|
0, |
|
|
0, |
|
|
0, |
|
|
0, |
|
|
0x0100000000000000ull, |
|
|
0, |
|
|
0x0002000000000000ull |
|
|
}; |
|
|
|
|
|
__global__ __launch_bounds__(256, 4) |
|
|
void quark_blake512_gpu_hash_64(int threads, uint32_t startNounce, uint32_t *g_nonceVector, uint64_t *g_hash) |
|
|
{ |
|
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
|
|
|
|
#if USE_SHUFFLE |
|
|
const int warpID = threadIdx.x & 0x0F; // 16 warps |
|
|
const int warpBlockID = (thread + 15)>>4; // aufrunden auf volle Warp-Bl<EFBFBD>cke |
|
|
const int maxHashPosition = thread<<3; |
|
|
#endif |
|
|
|
|
|
#if USE_SHUFFLE |
|
|
if (warpBlockID < ( (threads+15)>>4 )) |
|
|
#else |
|
|
if (thread < threads) |
|
|
#endif |
|
|
{ |
|
|
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); |
|
|
|
|
|
int hashPosition = nounce - startNounce; |
|
|
uint64_t *inpHash = &g_hash[hashPosition<<3]; // hashPosition * 8 |
|
|
|
|
|
// 128 Bytes |
|
|
uint64_t buf[16]; |
|
|
|
|
|
// State |
|
|
uint64_t h[8]; |
|
|
#pragma unroll 8 |
|
|
for (int i=0;i<8;i++) |
|
|
h[i] = d_constMem[i]; |
|
|
|
|
|
// Message for first round |
|
|
#pragma unroll 8 |
|
|
for (int i=0; i < 8; ++i) |
|
|
buf[i] = inpHash[i]; |
|
|
|
|
|
#pragma unroll 8 |
|
|
for (int i=0; i < 8; i++) |
|
|
buf[i+8] = d_constHashPadding[i]; |
|
|
|
|
|
// Ending round |
|
|
quark_blake512_compress( h, buf, c_sigma, c_u512, 512 ); |
|
|
|
|
|
#if __CUDA_ARCH__ <= 350 |
|
|
uint32_t *outHash = (uint32_t*)&g_hash[8 * hashPosition]; |
|
|
#pragma unroll 8 |
|
|
for (int i=0; i < 8; i++) { |
|
|
outHash[2*i+0] = cuda_swab32( _HIWORD(h[i]) ); |
|
|
outHash[2*i+1] = cuda_swab32( _LOWORD(h[i]) ); |
|
|
} |
|
|
#else |
|
|
uint64_t *outHash = &g_hash[8 * hashPosition]; |
|
|
for (int i=0; i < 8; i++) { |
|
|
outHash[i] = cuda_swab64(h[i]); |
|
|
} |
|
|
#endif |
|
|
} |
|
|
} |
|
|
|
|
|
__global__ void quark_blake512_gpu_hash_80(int threads, uint32_t startNounce, void *outputHash) |
|
|
{ |
|
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
|
if (thread < threads) |
|
|
{ |
|
|
uint64_t h[8]; |
|
|
uint64_t buf[16]; |
|
|
uint32_t nounce = startNounce + thread; |
|
|
|
|
|
#pragma unroll 8 |
|
|
for(int i=0; i<8; i++) |
|
|
h[i] = d_constMem[i]; |
|
|
|
|
|
// Message f<EFBFBD>r die erste Runde in Register holen |
|
|
#pragma unroll 16 |
|
|
for (int i=0; i < 16; ++i) |
|
|
buf[i] = c_PaddedMessage80[i]; |
|
|
|
|
|
// The test Nonce |
|
|
((uint32_t*)buf)[19] = cuda_swab32(nounce); |
|
|
|
|
|
quark_blake512_compress( h, buf, c_sigma, c_u512, 640 ); |
|
|
|
|
|
#if __CUDA_ARCH__ <= 350 |
|
|
uint32_t *outHash = (uint32_t *)outputHash + 16 * thread; |
|
|
#pragma unroll 8 |
|
|
for (uint32_t i=0; i < 8; i++) { |
|
|
outHash[2*i] = cuda_swab32( _HIWORD(h[i]) ); |
|
|
outHash[2*i+1] = cuda_swab32( _LOWORD(h[i]) ); |
|
|
} |
|
|
#else |
|
|
uint64_t *outHash = (uint64_t *)outputHash + 8 * thread; |
|
|
for (uint32_t i=0; i < 8; i++) { |
|
|
outHash[i] = cuda_swab64( h[i] ); |
|
|
} |
|
|
#endif |
|
|
|
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
// ---------------------------- END CUDA quark_blake512 functions ------------------------------------ |
|
|
|
|
|
// Setup-Funktionen |
|
|
__host__ void quark_blake512_cpu_init(int thr_id, int threads) |
|
|
{ |
|
|
// Kopiere die Hash-Tabellen in den GPU-Speicher |
|
|
cudaMemcpyToSymbol( c_sigma, |
|
|
host_sigma, |
|
|
sizeof(host_sigma), |
|
|
0, cudaMemcpyHostToDevice); |
|
|
} |
|
|
|
|
|
// Blake512 f<EFBFBD>r 80 Byte grosse Eingangsdaten |
|
|
__host__ void quark_blake512_cpu_setBlock_80(void *pdata) |
|
|
{ |
|
|
// Message mit Padding bereitstellen |
|
|
// lediglich die korrekte Nonce ist noch ab Byte 76 einzusetzen. |
|
|
unsigned char PaddedMessage[128]; |
|
|
memcpy(PaddedMessage, pdata, 80); |
|
|
memset(PaddedMessage+80, 0, 48); |
|
|
PaddedMessage[80] = 0x80; |
|
|
PaddedMessage[111] = 1; |
|
|
PaddedMessage[126] = 0x02; |
|
|
PaddedMessage[127] = 0x80; |
|
|
|
|
|
CUDA_SAFE_CALL( |
|
|
cudaMemcpyToSymbol(c_PaddedMessage80, PaddedMessage, 16*sizeof(uint64_t), 0, cudaMemcpyHostToDevice) |
|
|
); |
|
|
} |
|
|
|
|
|
__host__ void quark_blake512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_outputHash, int order) |
|
|
{ |
|
|
const int threadsperblock = 256; |
|
|
|
|
|
// berechne wie viele Thread Blocks wir brauchen |
|
|
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
|
|
dim3 block(threadsperblock); |
|
|
|
|
|
// Gr<EFBFBD><EFBFBD>e des dynamischen Shared Memory Bereichs |
|
|
size_t shared_size = 0; |
|
|
|
|
|
quark_blake512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, d_nonceVector, (uint64_t*)d_outputHash); |
|
|
|
|
|
// Strategisches Sleep Kommando zur Senkung der CPU Last |
|
|
MyStreamSynchronize(NULL, order, thr_id); |
|
|
} |
|
|
|
|
|
__host__ void quark_blake512_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, uint32_t *d_outputHash, int order) |
|
|
{ |
|
|
const int threadsperblock = 256; |
|
|
|
|
|
// berechne wie viele Thread Blocks wir brauchen |
|
|
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
|
|
dim3 block(threadsperblock); |
|
|
|
|
|
// Gr<EFBFBD><EFBFBD>e des dynamischen Shared Memory Bereichs |
|
|
size_t shared_size = 0; |
|
|
|
|
|
quark_blake512_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNounce, d_outputHash); |
|
|
|
|
|
// Strategisches Sleep Kommando zur Senkung der CPU Last |
|
|
MyStreamSynchronize(NULL, order, thr_id); |
|
|
}
|
|
|
|