GOSTcoin support for ccminer CUDA miner project, compatible with most nvidia cards
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

234 lines
5.4 KiB

#include <cuda.h>
#include <cuda_runtime.h>
#include "device_launch_parameters.h"
#include <stdio.h>
#include <stdint.h>
#include <memory.h>
// das Hi Word aus einem 64 Bit Typen extrahieren
#if 0
static __device__ uint32_t HIWORD(const uint64_t &x) {
#if __CUDA_ARCH__ >= 130
return (uint32_t)__double2hiint(__longlong_as_double(x));
#else
return (uint32_t)(x >> 32);
#endif
}
// das Lo Word aus einem 64 Bit Typen extrahieren
static __device__ uint32_t LOWORD(const uint64_t &x) {
#if __CUDA_ARCH__ >= 130
return (uint32_t)__double2loint(__longlong_as_double(x));
#else
return (uint32_t)(x & 0xFFFFFFFFULL);
#endif
}
#endif
#define SPH_C64(x) ((uint64_t)(x ## ULL))
#define SPH_C32(x) ((uint32_t)(x ## U))
// aus heavy.cu
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
#include "cuda_x11_aes.cu"
__device__ __forceinline__ void AES_2ROUND(
const uint32_t* __restrict__ sharedMemory,
uint32_t &x0, uint32_t &x1, uint32_t &x2, uint32_t &x3,
uint32_t &k0, uint32_t &k1, uint32_t &k2, uint32_t &k3)
{
uint32_t y0, y1, y2, y3;
aes_round(sharedMemory,
x0, x1, x2, x3,
k0,
y0, y1, y2, y3);
aes_round(sharedMemory,
y0, y1, y2, y3,
x0, x1, x2, x3);
// hier werden wir ein carry brauchen (oder auch nicht)
k0++;
}
__device__ __forceinline__ void cuda_echo_round(
const uint32_t *sharedMemory,
uint32_t &k0, uint32_t &k1, uint32_t &k2, uint32_t &k3,
uint32_t *W, int round)
{
// W hat 16*4 als Abmaße
// Big Sub Words
#pragma unroll 16
for(int i=0;i<16;i++)
{
int idx = i<<2; // *4
AES_2ROUND(sharedMemory,
W[idx+0], W[idx+1], W[idx+2], W[idx+3],
k0, k1, k2, k3);
}
// Shift Rows
#pragma unroll 4
for(int i=0;i<4;i++)
{
uint32_t t;
/// 1, 5, 9, 13
t = W[4 + i];
W[4 + i] = W[20 + i];
W[20 + i] = W[36 + i];
W[36 + i] = W[52 + i];
W[52 + i] = t;
// 2, 6, 10, 14
t = W[8 + i];
W[8 + i] = W[40 + i];
W[40 + i] = t;
t = W[24 + i];
W[24 + i] = W[56 + i];
W[56 + i] = t;
// 15, 11, 7, 3
t = W[60 + i];
W[60 + i] = W[44 + i];
W[44 + i] = W[28 + i];
W[28 + i] = W[12 + i];
W[12 + i] = t;
}
// Mix Columns
#pragma unroll 4
for(int i=0;i<4;i++) // Schleife über je 2*uint32_t
{
#pragma unroll 4
for(int j=0;j<4;j++) // Schleife über die elemnte
{
int idx = j<<2; // j*4
uint32_t a = W[ ((idx + 0)<<2) + i];
uint32_t b = W[ ((idx + 1)<<2) + i];
uint32_t c = W[ ((idx + 2)<<2) + i];
uint32_t d = W[ ((idx + 3)<<2) + i];
uint32_t ab = a ^ b;
uint32_t bc = b ^ c;
uint32_t cd = c ^ d;
uint32_t t;
t = ((ab & 0x80808080) >> 7);
uint32_t abx = t<<4 ^ t<<3 ^ t<<1 ^ t;
t = ((bc & 0x80808080) >> 7);
uint32_t bcx = t<<4 ^ t<<3 ^ t<<1 ^ t;
t = ((cd & 0x80808080) >> 7);
uint32_t cdx = t<<4 ^ t<<3 ^ t<<1 ^ t;
abx ^= ((ab & 0x7F7F7F7F) << 1);
bcx ^= ((bc & 0x7F7F7F7F) << 1);
cdx ^= ((cd & 0x7F7F7F7F) << 1);
W[ ((idx + 0)<<2) + i] = abx ^ bc ^ d;
W[ ((idx + 1)<<2) + i] = bcx ^ a ^ cd;
W[ ((idx + 2)<<2) + i] = cdx ^ ab ^ d;
W[ ((idx + 3)<<2) + i] = abx ^ bcx ^ cdx ^ ab ^ c;
}
}
}
__global__ void x11_echo512_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector)
{
__shared__ uint32_t sharedMemory[1024];
aes_gpu_init(sharedMemory);
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
int hashPosition = nounce - startNounce;
uint32_t *Hash = (uint32_t*)&g_hash[hashPosition<<3];
uint32_t W[64];
uint32_t k0 = 512, k1 = 0, k2 = 0, k3 = 0; // K0 = bitlen
/* Initialisierung */
#pragma unroll 8
for(int i=0;i<32;i+=4)
{
W[i + 0] = 512;
W[i + 1] = 0;
W[i + 2] = 0;
W[i + 3] = 0;
}
// kopiere 32-byte großen hash
#pragma unroll 16
for(int i=0;i<16;i++)
W[i+32] = Hash[i];
W[48] = 0x80; // fest
#pragma unroll 10
for(int i=49;i<59;i++)
W[i] = 0;
W[59] = 0x02000000; // fest
W[60] = k0; // bitlen
W[61] = k1;
W[62] = k2;
W[63] = k3;
for(int i=0;i<10;i++)
{
cuda_echo_round(sharedMemory, k0, k1, k2, k3, W, i);
}
#pragma unroll 8
for(int i=0;i<32;i+=4)
{
W[i ] ^= W[32 + i ] ^ 512;
W[i+1] ^= W[32 + i + 1];
W[i+2] ^= W[32 + i + 2];
W[i+3] ^= W[32 + i + 3];
}
#pragma unroll 16
for(int i=0;i<16;i++)
W[i] ^= Hash[i];
// tsiv: I feel iffy about removing this, but it seems to break the full hash
// fortunately for X11 the flipped bit lands outside the first 32 bytes used as the final X11 hash
// try chaining more algos after echo (X13) and boom
//W[8] ^= 0x10;
W[27] ^= 0x02000000;
W[28] ^= k0;
#pragma unroll 16
for(int i=0;i<16;i++)
Hash[i] = W[i];
}
}
// Setup-Funktionen
__host__ void x11_echo512_cpu_init(int thr_id, int threads)
{
aes_cpu_init();
}
__host__ void x11_echo512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
const int threadsperblock = 256;
// berechne wie viele Thread Blocks wir brauchen
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
// Größe des dynamischen Shared Memory Bereichs
size_t shared_size = 0;
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size);
x11_echo512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
MyStreamSynchronize(NULL, order, thr_id);
}