1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-22 12:34:17 +00:00
ccminer/Algo256/cuda_cubehash256.cu
2015-09-06 13:49:52 +02:00

306 lines
7.7 KiB
Plaintext

#include "cuda_helper.h"
#define CUBEHASH_ROUNDS 16 /* this is r for CubeHashr/b */
#define CUBEHASH_BLOCKBYTES 32 /* this is b for CubeHashr/b */
#if __CUDA_ARCH__ < 350
#define LROT(x,bits) ((x << bits) | (x >> (32 - bits)))
#else
#define LROT(x, bits) __funnelshift_l(x, x, bits)
#endif
#if __CUDA_ARCH__ < 500
#define TPB 576
#else
#define TPB 1024
#endif
#define ROTATEUPWARDS7(a) LROT(a,7)
#define ROTATEUPWARDS11(a) LROT(a,11)
//#define SWAP(a,b) { uint32_t u = a; a = b; b = u; }
#define SWAP(a,b) { a ^= b; b ^= a; a ^= b; }
__device__ __forceinline__ void rrounds(uint32_t x[2][2][2][2][2])
{
int r;
int j;
int k;
int l;
int m;
#pragma unroll 2
for (r = 0; r < CUBEHASH_ROUNDS; ++r) {
/* "add x_0jklm into x_1jklmn modulo 2^32" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (l = 0; l < 2; ++l)
#pragma unroll 2
for (m = 0; m < 2; ++m)
x[1][j][k][l][m] += x[0][j][k][l][m];
/* "rotate x_0jklm upwards by 7 bits" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (l = 0; l < 2; ++l)
#pragma unroll 2
for (m = 0; m < 2; ++m)
x[0][j][k][l][m] = ROTATEUPWARDS7(x[0][j][k][l][m]);
/* "swap x_00klm with x_01klm" */
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (l = 0; l < 2; ++l)
#pragma unroll 2
for (m = 0; m < 2; ++m)
SWAP(x[0][0][k][l][m], x[0][1][k][l][m])
/* "xor x_1jklm into x_0jklm" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (l = 0; l < 2; ++l)
#pragma unroll 2
for (m = 0; m < 2; ++m)
x[0][j][k][l][m] ^= x[1][j][k][l][m];
/* "swap x_1jk0m with x_1jk1m" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (m = 0; m < 2; ++m)
SWAP(x[1][j][k][0][m], x[1][j][k][1][m])
/* "add x_0jklm into x_1jklm modulo 2^32" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (l = 0; l < 2; ++l)
#pragma unroll 2
for (m = 0; m < 2; ++m)
x[1][j][k][l][m] += x[0][j][k][l][m];
/* "rotate x_0jklm upwards by 11 bits" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (l = 0; l < 2; ++l)
#pragma unroll 2
for (m = 0; m < 2; ++m)
x[0][j][k][l][m] = ROTATEUPWARDS11(x[0][j][k][l][m]);
/* "swap x_0j0lm with x_0j1lm" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (l = 0; l < 2; ++l)
#pragma unroll 2
for (m = 0; m < 2; ++m)
SWAP(x[0][j][0][l][m], x[0][j][1][l][m])
/* "xor x_1jklm into x_0jklm" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (l = 0; l < 2; ++l)
#pragma unroll 2
for (m = 0; m < 2; ++m)
x[0][j][k][l][m] ^= x[1][j][k][l][m];
/* "swap x_1jkl0 with x_1jkl1" */
#pragma unroll 2
for (j = 0; j < 2; ++j)
#pragma unroll 2
for (k = 0; k < 2; ++k)
#pragma unroll 2
for (l = 0; l < 2; ++l)
SWAP(x[1][j][k][l][0], x[1][j][k][l][1])
}
}
__device__ __forceinline__ void block_tox(const uint32_t *in, uint32_t x[2][2][2][2][2])
{
x[0][0][0][0][0] ^= in[0];
x[0][0][0][0][1] ^= in[1];
x[0][0][0][1][0] ^= in[2];
x[0][0][0][1][1] ^= in[3];
x[0][0][1][0][0] ^= in[4];
x[0][0][1][0][1] ^= in[5];
x[0][0][1][1][0] ^= in[6];
x[0][0][1][1][1] ^= in[7];
}
__device__ __forceinline__ void hash_fromx(uint32_t *out, uint32_t x[2][2][2][2][2])
{
out[0] = x[0][0][0][0][0];
out[1] = x[0][0][0][0][1];
out[2] = x[0][0][0][1][0];
out[3] = x[0][0][0][1][1];
out[4] = x[0][0][1][0][0];
out[5] = x[0][0][1][0][1];
out[6] = x[0][0][1][1][0];
out[7] = x[0][0][1][1][1];
}
__device__ __forceinline__
void Update32(uint32_t x[2][2][2][2][2], const uint32_t *data)
{
/* "xor the block into the first b bytes of the state" */
/* "and then transform the state invertibly through r identical rounds" */
block_tox(data, x);
rrounds(x);
}
__device__ __forceinline__
void Update32_const(uint32_t x[2][2][2][2][2])
{
x[0][0][0][0][0] ^= 0x80;
rrounds(x);
}
__device__ __forceinline__
void Final(uint32_t x[2][2][2][2][2], uint32_t *hashval)
{
/* "the integer 1 is xored into the last state word x_11111" */
x[1][1][1][1][1] ^= 1U;
/* "the state is then transformed invertibly through 10r identical rounds" */
#pragma unroll 2
for (int i = 0; i < 10; ++i) rrounds(x);
/* "output the first h/8 bytes of the state" */
hash_fromx(hashval, x);
}
#if __CUDA_ARCH__ >= 500
__global__ __launch_bounds__(TPB, 1)
void cubehash256_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint2 *g_hash)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint2 Hash[4];
Hash[0] = __ldg(&g_hash[thread]);
Hash[1] = __ldg(&g_hash[thread + 1 * threads]);
Hash[2] = __ldg(&g_hash[thread + 2 * threads]);
Hash[3] = __ldg(&g_hash[thread + 3 * threads]);
uint32_t x[2][2][2][2][2] =
{
0xEA2BD4B4, 0xCCD6F29F, 0x63117E71, 0x35481EAE,
0x22512D5B, 0xE5D94E63, 0x7E624131, 0xF4CC12BE,
0xC2D0B696, 0x42AF2070, 0xD0720C35, 0x3361DA8C,
0x28CCECA4, 0x8EF8AD83, 0x4680AC00, 0x40E5FBAB,
0xD89041C3, 0x6107FBD5, 0x6C859D41, 0xF0B26679,
0x09392549, 0x5FA25603, 0x65C892FD, 0x93CB6285,
0x2AF2B5AE, 0x9E4B4E60, 0x774ABFDD, 0x85254725,
0x15815AEB, 0x4AB6AAD6, 0x9CDAF8AF, 0xD6032C0A
};
x[0][0][0][0][0] ^= Hash[0].x;
x[0][0][0][0][1] ^= Hash[0].y;
x[0][0][0][1][0] ^= Hash[1].x;
x[0][0][0][1][1] ^= Hash[1].y;
x[0][0][1][0][0] ^= Hash[2].x;
x[0][0][1][0][1] ^= Hash[2].y;
x[0][0][1][1][0] ^= Hash[3].x;
x[0][0][1][1][1] ^= Hash[3].y;
rrounds(x);
x[0][0][0][0][0] ^= 0x80U;
rrounds(x);
Final(x, (uint32_t*) Hash);
g_hash[thread] = Hash[0];
g_hash[1 * threads + thread] = Hash[1];
g_hash[2 * threads + thread] = Hash[2];
g_hash[3 * threads + thread] = Hash[3];
}
}
#else
__global__ __launch_bounds__(TPB, 1)
void cubehash256_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint2 *d_hash)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t Hash[8];
uint64_t* g_hash = (uint64_t*) d_hash;
LOHI(Hash[0], Hash[1], __ldg(&g_hash[thread]));
LOHI(Hash[2], Hash[3], __ldg(&g_hash[thread + 1 * threads]));
LOHI(Hash[4], Hash[5], __ldg(&g_hash[thread + 2 * threads]));
LOHI(Hash[6], Hash[7], __ldg(&g_hash[thread + 3 * threads]));
uint32_t x[2][2][2][2][2] =
{
0xEA2BD4B4, 0xCCD6F29F, 0x63117E71, 0x35481EAE,
0x22512D5B, 0xE5D94E63, 0x7E624131, 0xF4CC12BE,
0xC2D0B696, 0x42AF2070, 0xD0720C35, 0x3361DA8C,
0x28CCECA4, 0x8EF8AD83, 0x4680AC00, 0x40E5FBAB,
0xD89041C3, 0x6107FBD5, 0x6C859D41, 0xF0B26679,
0x09392549, 0x5FA25603, 0x65C892FD, 0x93CB6285,
0x2AF2B5AE, 0x9E4B4E60, 0x774ABFDD, 0x85254725,
0x15815AEB, 0x4AB6AAD6, 0x9CDAF8AF, 0xD6032C0A
};
x[0][0][0][0][0] ^= Hash[0];
x[0][0][0][0][1] ^= Hash[1];
x[0][0][0][1][0] ^= Hash[2];
x[0][0][0][1][1] ^= Hash[3];
x[0][0][1][0][0] ^= Hash[4];
x[0][0][1][0][1] ^= Hash[5];
x[0][0][1][1][0] ^= Hash[6];
x[0][0][1][1][1] ^= Hash[7];
rrounds(x);
x[0][0][0][0][0] ^= 0x80U;
rrounds(x);
Final(x, Hash);
g_hash[thread] = ((uint64_t*)Hash)[0];
g_hash[1 * threads + thread] = ((uint64_t*)Hash)[1];
g_hash[2 * threads + thread] = ((uint64_t*)Hash)[2];
g_hash[3 * threads + thread] = ((uint64_t*)Hash)[3];
}
}
#endif
__host__
void cubehash256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash, int order)
{
uint32_t tpb = TPB;
dim3 grid((threads + tpb-1)/tpb);
dim3 block(tpb);
cubehash256_gpu_hash_32 <<<grid, block>>> (threads, startNounce, (uint2*) d_hash);
}