mirror of
https://github.com/GOSTSec/ccminer
synced 2025-01-10 14:57:53 +00:00
922c2a5cd7
All can be freed propertly now, except script (reset) and lyra2 (leak)
454 lines
10 KiB
Plaintext
454 lines
10 KiB
Plaintext
//
|
|
// =============== BLAKE part on nVidia GPU ======================
|
|
//
|
|
// This is the generic "default" implementation when no architecture
|
|
// specific implementation is available in the kernel.
|
|
//
|
|
// NOTE: compile this .cu module for compute_10,sm_10 with --maxrregcount=64
|
|
//
|
|
// TODO: CUDA porting work remains to be done.
|
|
//
|
|
|
|
#include <map>
|
|
#include <stdint.h>
|
|
|
|
#include "miner.h"
|
|
#include "salsa_kernel.h"
|
|
|
|
#include "cuda_helper.h"
|
|
typedef uint32_t sph_u32;
|
|
#define SPH_ROTL32 ROTL32
|
|
#define SPH_ROTR32 ROTR32
|
|
|
|
__constant__ uint64_t ptarget64[4];
|
|
__constant__ uint32_t pdata[20];
|
|
|
|
// define some error checking macros
|
|
#define DELIMITER '/'
|
|
#define __FILENAME__ ( strrchr(__FILE__, DELIMITER) != NULL ? strrchr(__FILE__, DELIMITER)+1 : __FILE__ )
|
|
|
|
#undef checkCudaErrors
|
|
#define checkCudaErrors(x) \
|
|
{ \
|
|
cudaGetLastError(); \
|
|
x; \
|
|
cudaError_t err = cudaGetLastError(); \
|
|
if (err != cudaSuccess && !abort_flag) \
|
|
applog(LOG_ERR, "GPU #%d: cudaError %d (%s) (%s line %d)\n", device_map[thr_id], err, cudaGetErrorString(err), __FILENAME__, __LINE__); \
|
|
}
|
|
|
|
// from salsa_kernel.cu
|
|
extern std::map<int, uint32_t *> context_idata[2];
|
|
extern std::map<int, uint32_t *> context_odata[2];
|
|
extern std::map<int, cudaStream_t> context_streams[2];
|
|
extern std::map<int, uint32_t *> context_hash[2];
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning (disable: 4146)
|
|
#endif
|
|
|
|
/**
|
|
* Encode a 32-bit value into the provided buffer (big endian convention).
|
|
*
|
|
* @param dst the destination buffer
|
|
* @param val the 32-bit value to encode
|
|
*/
|
|
static __device__ void
|
|
cuda_sph_enc32be(void *dst, sph_u32 val)
|
|
{
|
|
*(sph_u32 *)dst = cuda_swab32(val);
|
|
}
|
|
|
|
#define Z00 0
|
|
#define Z01 1
|
|
#define Z02 2
|
|
#define Z03 3
|
|
#define Z04 4
|
|
#define Z05 5
|
|
#define Z06 6
|
|
#define Z07 7
|
|
#define Z08 8
|
|
#define Z09 9
|
|
#define Z0A A
|
|
#define Z0B B
|
|
#define Z0C C
|
|
#define Z0D D
|
|
#define Z0E E
|
|
#define Z0F F
|
|
|
|
#define Z10 E
|
|
#define Z11 A
|
|
#define Z12 4
|
|
#define Z13 8
|
|
#define Z14 9
|
|
#define Z15 F
|
|
#define Z16 D
|
|
#define Z17 6
|
|
#define Z18 1
|
|
#define Z19 C
|
|
#define Z1A 0
|
|
#define Z1B 2
|
|
#define Z1C B
|
|
#define Z1D 7
|
|
#define Z1E 5
|
|
#define Z1F 3
|
|
|
|
#define Z20 B
|
|
#define Z21 8
|
|
#define Z22 C
|
|
#define Z23 0
|
|
#define Z24 5
|
|
#define Z25 2
|
|
#define Z26 F
|
|
#define Z27 D
|
|
#define Z28 A
|
|
#define Z29 E
|
|
#define Z2A 3
|
|
#define Z2B 6
|
|
#define Z2C 7
|
|
#define Z2D 1
|
|
#define Z2E 9
|
|
#define Z2F 4
|
|
|
|
#define Z30 7
|
|
#define Z31 9
|
|
#define Z32 3
|
|
#define Z33 1
|
|
#define Z34 D
|
|
#define Z35 C
|
|
#define Z36 B
|
|
#define Z37 E
|
|
#define Z38 2
|
|
#define Z39 6
|
|
#define Z3A 5
|
|
#define Z3B A
|
|
#define Z3C 4
|
|
#define Z3D 0
|
|
#define Z3E F
|
|
#define Z3F 8
|
|
|
|
#define Z40 9
|
|
#define Z41 0
|
|
#define Z42 5
|
|
#define Z43 7
|
|
#define Z44 2
|
|
#define Z45 4
|
|
#define Z46 A
|
|
#define Z47 F
|
|
#define Z48 E
|
|
#define Z49 1
|
|
#define Z4A B
|
|
#define Z4B C
|
|
#define Z4C 6
|
|
#define Z4D 8
|
|
#define Z4E 3
|
|
#define Z4F D
|
|
|
|
#define Z50 2
|
|
#define Z51 C
|
|
#define Z52 6
|
|
#define Z53 A
|
|
#define Z54 0
|
|
#define Z55 B
|
|
#define Z56 8
|
|
#define Z57 3
|
|
#define Z58 4
|
|
#define Z59 D
|
|
#define Z5A 7
|
|
#define Z5B 5
|
|
#define Z5C F
|
|
#define Z5D E
|
|
#define Z5E 1
|
|
#define Z5F 9
|
|
|
|
#define Z60 C
|
|
#define Z61 5
|
|
#define Z62 1
|
|
#define Z63 F
|
|
#define Z64 E
|
|
#define Z65 D
|
|
#define Z66 4
|
|
#define Z67 A
|
|
#define Z68 0
|
|
#define Z69 7
|
|
#define Z6A 6
|
|
#define Z6B 3
|
|
#define Z6C 9
|
|
#define Z6D 2
|
|
#define Z6E 8
|
|
#define Z6F B
|
|
|
|
#define Z70 D
|
|
#define Z71 B
|
|
#define Z72 7
|
|
#define Z73 E
|
|
#define Z74 C
|
|
#define Z75 1
|
|
#define Z76 3
|
|
#define Z77 9
|
|
#define Z78 5
|
|
#define Z79 0
|
|
#define Z7A F
|
|
#define Z7B 4
|
|
#define Z7C 8
|
|
#define Z7D 6
|
|
#define Z7E 2
|
|
#define Z7F A
|
|
|
|
#define Z80 6
|
|
#define Z81 F
|
|
#define Z82 E
|
|
#define Z83 9
|
|
#define Z84 B
|
|
#define Z85 3
|
|
#define Z86 0
|
|
#define Z87 8
|
|
#define Z88 C
|
|
#define Z89 2
|
|
#define Z8A D
|
|
#define Z8B 7
|
|
#define Z8C 1
|
|
#define Z8D 4
|
|
#define Z8E A
|
|
#define Z8F 5
|
|
|
|
#define Z90 A
|
|
#define Z91 2
|
|
#define Z92 8
|
|
#define Z93 4
|
|
#define Z94 7
|
|
#define Z95 6
|
|
#define Z96 1
|
|
#define Z97 5
|
|
#define Z98 F
|
|
#define Z99 B
|
|
#define Z9A 9
|
|
#define Z9B E
|
|
#define Z9C 3
|
|
#define Z9D C
|
|
#define Z9E D
|
|
#define Z9F 0
|
|
|
|
#define Mx(r, i) Mx_(Z ## r ## i)
|
|
#define Mx_(n) Mx__(n)
|
|
#define Mx__(n) M ## n
|
|
|
|
#define CSx(r, i) CSx_(Z ## r ## i)
|
|
#define CSx_(n) CSx__(n)
|
|
#define CSx__(n) CS ## n
|
|
|
|
#define CS0 SPH_C32(0x243F6A88)
|
|
#define CS1 SPH_C32(0x85A308D3)
|
|
#define CS2 SPH_C32(0x13198A2E)
|
|
#define CS3 SPH_C32(0x03707344)
|
|
#define CS4 SPH_C32(0xA4093822)
|
|
#define CS5 SPH_C32(0x299F31D0)
|
|
#define CS6 SPH_C32(0x082EFA98)
|
|
#define CS7 SPH_C32(0xEC4E6C89)
|
|
#define CS8 SPH_C32(0x452821E6)
|
|
#define CS9 SPH_C32(0x38D01377)
|
|
#define CSA SPH_C32(0xBE5466CF)
|
|
#define CSB SPH_C32(0x34E90C6C)
|
|
#define CSC SPH_C32(0xC0AC29B7)
|
|
#define CSD SPH_C32(0xC97C50DD)
|
|
#define CSE SPH_C32(0x3F84D5B5)
|
|
#define CSF SPH_C32(0xB5470917)
|
|
|
|
#define GS(m0, m1, c0, c1, a, b, c, d) do { \
|
|
a = SPH_T32(a + b + (m0 ^ c1)); \
|
|
d = SPH_ROTR32(d ^ a, 16); \
|
|
c = SPH_T32(c + d); \
|
|
b = SPH_ROTR32(b ^ c, 12); \
|
|
a = SPH_T32(a + b + (m1 ^ c0)); \
|
|
d = SPH_ROTR32(d ^ a, 8); \
|
|
c = SPH_T32(c + d); \
|
|
b = SPH_ROTR32(b ^ c, 7); \
|
|
} while (0)
|
|
|
|
#define ROUND_S(r) do { \
|
|
GS(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \
|
|
GS(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \
|
|
GS(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \
|
|
GS(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \
|
|
GS(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \
|
|
GS(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \
|
|
GS(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \
|
|
GS(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \
|
|
} while (0)
|
|
|
|
#define COMPRESS32 do { \
|
|
sph_u32 M0, M1, M2, M3, M4, M5, M6, M7; \
|
|
sph_u32 M8, M9, MA, MB, MC, MD, ME, MF; \
|
|
sph_u32 V0, V1, V2, V3, V4, V5, V6, V7; \
|
|
sph_u32 V8, V9, VA, VB, VC, VD, VE, VF; \
|
|
V0 = H0; \
|
|
V1 = H1; \
|
|
V2 = H2; \
|
|
V3 = H3; \
|
|
V4 = H4; \
|
|
V5 = H5; \
|
|
V6 = H6; \
|
|
V7 = H7; \
|
|
V8 = S0 ^ CS0; \
|
|
V9 = S1 ^ CS1; \
|
|
VA = S2 ^ CS2; \
|
|
VB = S3 ^ CS3; \
|
|
VC = T0 ^ CS4; \
|
|
VD = T0 ^ CS5; \
|
|
VE = T1 ^ CS6; \
|
|
VF = T1 ^ CS7; \
|
|
M0 = input[0]; \
|
|
M1 = input[1]; \
|
|
M2 = input[2]; \
|
|
M3 = input[3]; \
|
|
M4 = input[4]; \
|
|
M5 = input[5]; \
|
|
M6 = input[6]; \
|
|
M7 = input[7]; \
|
|
M8 = input[8]; \
|
|
M9 = input[9]; \
|
|
MA = input[10]; \
|
|
MB = input[11]; \
|
|
MC = input[12]; \
|
|
MD = input[13]; \
|
|
ME = input[14]; \
|
|
MF = input[15]; \
|
|
ROUND_S(0); \
|
|
ROUND_S(1); \
|
|
ROUND_S(2); \
|
|
ROUND_S(3); \
|
|
ROUND_S(4); \
|
|
ROUND_S(5); \
|
|
ROUND_S(6); \
|
|
ROUND_S(7); \
|
|
H0 ^= S0 ^ V0 ^ V8; \
|
|
H1 ^= S1 ^ V1 ^ V9; \
|
|
H2 ^= S2 ^ V2 ^ VA; \
|
|
H3 ^= S3 ^ V3 ^ VB; \
|
|
H4 ^= S0 ^ V4 ^ VC; \
|
|
H5 ^= S1 ^ V5 ^ VD; \
|
|
H6 ^= S2 ^ V6 ^ VE; \
|
|
H7 ^= S3 ^ V7 ^ VF; \
|
|
} while (0)
|
|
|
|
__global__
|
|
void cuda_blake256_hash( uint64_t *g_out, uint32_t nonce, uint32_t *g_good, bool validate )
|
|
{
|
|
uint32_t input[16];
|
|
uint64_t output[4];
|
|
|
|
#pragma unroll
|
|
for (int i=0; i < 16; ++i) input[i] = pdata[i];
|
|
|
|
sph_u32 H0 = 0x6A09E667;
|
|
sph_u32 H1 = 0xBB67AE85;
|
|
sph_u32 H2 = 0x3C6EF372;
|
|
sph_u32 H3 = 0xA54FF53A;
|
|
sph_u32 H4 = 0x510E527F;
|
|
sph_u32 H5 = 0x9B05688C;
|
|
sph_u32 H6 = 0x1F83D9AB;
|
|
sph_u32 H7 = 0x5BE0CD19;
|
|
sph_u32 S0 = 0;
|
|
sph_u32 S1 = 0;
|
|
sph_u32 S2 = 0;
|
|
sph_u32 S3 = 0;
|
|
sph_u32 T0 = 0;
|
|
sph_u32 T1 = 0;
|
|
T0 = SPH_T32(T0 + 512);
|
|
COMPRESS32;
|
|
|
|
#pragma unroll
|
|
for (int i=0; i < 3; ++i) input[i] = pdata[16+i];
|
|
input[3] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x);
|
|
input[4] = 0x80000000;
|
|
#pragma unroll 8
|
|
for (int i=5; i < 13; ++i) input[i] = 0;
|
|
input[13] = 0x00000001;
|
|
input[14] = T1;
|
|
input[15] = T0 + 128;
|
|
|
|
T0 = SPH_T32(T0 + 128);
|
|
COMPRESS32;
|
|
|
|
cuda_sph_enc32be((unsigned char*)output + 4*6, H6);
|
|
cuda_sph_enc32be((unsigned char*)output + 4*7, H7);
|
|
if (validate || output[3] <= ptarget64[3])
|
|
{
|
|
// this data is only needed when we actually need to save the hashes
|
|
cuda_sph_enc32be((unsigned char*)output + 4*0, H0);
|
|
cuda_sph_enc32be((unsigned char*)output + 4*1, H1);
|
|
cuda_sph_enc32be((unsigned char*)output + 4*2, H2);
|
|
cuda_sph_enc32be((unsigned char*)output + 4*3, H3);
|
|
cuda_sph_enc32be((unsigned char*)output + 4*4, H4);
|
|
cuda_sph_enc32be((unsigned char*)output + 4*5, H5);
|
|
}
|
|
|
|
if (validate)
|
|
{
|
|
g_out += 4 * ((blockIdx.x * blockDim.x) + threadIdx.x);
|
|
#pragma unroll
|
|
for (int i=0; i < 4; ++i) g_out[i] = output[i];
|
|
}
|
|
|
|
if (output[3] <= ptarget64[3]) {
|
|
uint64_t *g_good64 = (uint64_t*)g_good;
|
|
if (output[3] < g_good64[3]) {
|
|
g_good64[3] = output[3];
|
|
g_good64[2] = output[2];
|
|
g_good64[1] = output[1];
|
|
g_good64[0] = output[0];
|
|
g_good[8] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x);
|
|
}
|
|
}
|
|
}
|
|
|
|
static std::map<int, uint32_t *> context_good[2];
|
|
|
|
static bool init[MAX_GPUS] = { 0 };
|
|
|
|
bool default_prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t host_ptarget[8])
|
|
{
|
|
if (!init[thr_id])
|
|
{
|
|
// allocate pinned host memory for good hashes
|
|
uint32_t *tmp;
|
|
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[0][thr_id] = tmp;
|
|
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[1][thr_id] = tmp;
|
|
|
|
init[thr_id] = true;
|
|
}
|
|
checkCudaErrors(cudaMemcpyToSymbol(pdata, host_pdata, 80, 0, cudaMemcpyHostToDevice));
|
|
checkCudaErrors(cudaMemcpyToSymbol(ptarget64, host_ptarget, 32, 0, cudaMemcpyHostToDevice));
|
|
|
|
return context_good[0][thr_id] && context_good[1][thr_id];
|
|
}
|
|
|
|
void default_do_blake256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h)
|
|
{
|
|
checkCudaErrors(cudaMemsetAsync(context_good[stream][thr_id], 0xff, 9 * sizeof(uint32_t), context_streams[stream][thr_id]));
|
|
|
|
cuda_blake256_hash<<<grid, threads, 0, context_streams[stream][thr_id]>>>((uint64_t*)context_hash[stream][thr_id], nonce, context_good[stream][thr_id], do_d2h);
|
|
|
|
// copy hashes from device memory to host (ALL hashes, lots of data...)
|
|
if (do_d2h && hash != NULL) {
|
|
size_t mem_size = throughput * sizeof(uint32_t) * 8;
|
|
checkCudaErrors(cudaMemcpyAsync(hash, context_hash[stream][thr_id], mem_size,
|
|
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
|
|
}
|
|
else if (hash != NULL) {
|
|
// asynchronous copy of winning nonce (just 4 bytes...)
|
|
checkCudaErrors(cudaMemcpyAsync(hash, context_good[stream][thr_id]+8, sizeof(uint32_t),
|
|
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
|
|
}
|
|
}
|
|
|
|
void default_free_blake256(int thr_id)
|
|
{
|
|
if (init[thr_id]) {
|
|
cudaFree(context_good[0][thr_id]);
|
|
cudaFree(context_good[1][thr_id]);
|
|
init[thr_id] = false;
|
|
}
|
|
}
|
|
|