/* Diese Funktion ist auf 84+32-Byte große Eingabedaten ausgerichtet (Heavycoin) */ #include #include "cuda_runtime.h" #include "device_launch_parameters.h" #include #include // Folgende Definitionen später durch header ersetzen typedef unsigned char uint8_t; typedef unsigned int uint32_t; typedef unsigned long long uint64_t; // globaler Speicher für alle HeftyHashes aller Threads extern uint32_t *d_heftyHashes[8]; extern uint32_t *d_nonceVector[8]; // globaler Speicher für unsere Ergebnisse uint32_t *d_hash3output[8]; // der Keccak512 State nach der ersten Runde (72 Bytes) __constant__ uint64_t c_State[25]; // die Message (72 Bytes) für die zweite Runde auf der GPU __constant__ uint32_t c_PaddedMessage2[18]; // 44 bytes of remaining message (Nonce at offset 4) plus padding // ---------------------------- BEGIN CUDA keccak512 functions ------------------------------------ #define ROTL64(a,b) (((a) << (b)) | ((a) >> (64 - b))) #define U32TO64_LE(p) \ (((uint64_t)(*p)) | (((uint64_t)(*(p + 1))) << 32)) #define U64TO32_LE(p, v) \ *p = (uint32_t)((v)); *(p+1) = (uint32_t)((v) >> 32); static __device__ void mycpy72(uint32_t *d, const uint32_t *s) { #pragma unroll 18 for (int k=0; k < 18; ++k) d[k] = s[k]; } static __device__ void mycpy32(uint32_t *d, const uint32_t *s) { #pragma unroll 8 for (int k=0; k < 8; ++k) d[k] = s[k]; } typedef struct keccak_hash_state_t { uint64_t state[25]; // 25*2 uint32_t buffer[72/4]; // 72 } keccak_hash_state; __device__ void statecopy(uint64_t *d, uint64_t *s) { #pragma unroll 25 for (int i=0; i < 25; ++i) d[i] = s[i]; } static const uint64_t host_keccak_round_constants[24] = { 0x0000000000000001ull, 0x0000000000008082ull, 0x800000000000808aull, 0x8000000080008000ull, 0x000000000000808bull, 0x0000000080000001ull, 0x8000000080008081ull, 0x8000000000008009ull, 0x000000000000008aull, 0x0000000000000088ull, 0x0000000080008009ull, 0x000000008000000aull, 0x000000008000808bull, 0x800000000000008bull, 0x8000000000008089ull, 0x8000000000008003ull, 0x8000000000008002ull, 0x8000000000000080ull, 0x000000000000800aull, 0x800000008000000aull, 0x8000000080008081ull, 0x8000000000008080ull, 0x0000000080000001ull, 0x8000000080008008ull }; __constant__ uint64_t c_keccak_round_constants[24]; __host__ __device__ void keccak_block(uint64_t *s, const uint32_t *in, const uint64_t *keccak_round_constants) { size_t i; uint64_t t[5], u[5], v, w; /* absorb input */ #pragma unroll 9 for (i = 0; i < 72 / 8; i++, in += 2) s[i] ^= U32TO64_LE(in); for (i = 0; i < 24; i++) { /* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */ t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20]; t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21]; t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22]; t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23]; t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24]; /* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */ u[0] = t[4] ^ ROTL64(t[1], 1); u[1] = t[0] ^ ROTL64(t[2], 1); u[2] = t[1] ^ ROTL64(t[3], 1); u[3] = t[2] ^ ROTL64(t[4], 1); u[4] = t[3] ^ ROTL64(t[0], 1); /* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */ s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0]; s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1]; s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2]; s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3]; s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4]; /* rho pi: b[..] = rotl(a[..], ..) */ v = s[ 1]; s[ 1] = ROTL64(s[ 6], 44); s[ 6] = ROTL64(s[ 9], 20); s[ 9] = ROTL64(s[22], 61); s[22] = ROTL64(s[14], 39); s[14] = ROTL64(s[20], 18); s[20] = ROTL64(s[ 2], 62); s[ 2] = ROTL64(s[12], 43); s[12] = ROTL64(s[13], 25); s[13] = ROTL64(s[19], 8); s[19] = ROTL64(s[23], 56); s[23] = ROTL64(s[15], 41); s[15] = ROTL64(s[ 4], 27); s[ 4] = ROTL64(s[24], 14); s[24] = ROTL64(s[21], 2); s[21] = ROTL64(s[ 8], 55); s[ 8] = ROTL64(s[16], 45); s[16] = ROTL64(s[ 5], 36); s[ 5] = ROTL64(s[ 3], 28); s[ 3] = ROTL64(s[18], 21); s[18] = ROTL64(s[17], 15); s[17] = ROTL64(s[11], 10); s[11] = ROTL64(s[ 7], 6); s[ 7] = ROTL64(s[10], 3); s[10] = ROTL64( v, 1); /* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ v = s[ 0]; w = s[ 1]; s[ 0] ^= (~w) & s[ 2]; s[ 1] ^= (~s[ 2]) & s[ 3]; s[ 2] ^= (~s[ 3]) & s[ 4]; s[ 3] ^= (~s[ 4]) & v; s[ 4] ^= (~v) & w; v = s[ 5]; w = s[ 6]; s[ 5] ^= (~w) & s[ 7]; s[ 6] ^= (~s[ 7]) & s[ 8]; s[ 7] ^= (~s[ 8]) & s[ 9]; s[ 8] ^= (~s[ 9]) & v; s[ 9] ^= (~v) & w; v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w; v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w; v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w; /* iota: a[0,0] ^= round constant */ s[0] ^= keccak_round_constants[i]; } } // Die Hash-Funktion __global__ void keccak512_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *heftyHashes, uint32_t *nonceVector) { int thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { // bestimme den aktuellen Zähler //uint32_t nounce = startNounce + thread; uint32_t nounce = nonceVector[thread]; // Index-Position des Hashes in den Hash Puffern bestimmen (Hefty1 und outputHash) uint32_t hashPosition = nounce - startNounce; // erstmal den State der ersten Runde holen uint64_t keccak_gpu_state[25]; #pragma unroll 25 for (int i=0; i < 25; ++i) keccak_gpu_state[i] = c_State[i]; // Message2 in den Puffer holen uint32_t msgBlock[18]; mycpy72(msgBlock, c_PaddedMessage2); // die individuelle Nonce einsetzen msgBlock[1] = nounce; // den individuellen Hefty1 Hash einsetzen mycpy32(&msgBlock[3], &heftyHashes[8 * hashPosition]); // den Block einmal gut durchschütteln keccak_block(keccak_gpu_state, msgBlock, c_keccak_round_constants); // das Hash erzeugen uint32_t hash[16]; #pragma unroll 8 for (size_t i = 0; i < 64; i += 8) { U64TO32_LE((&hash[i/4]), keccak_gpu_state[i / 8]); } // und ins Global Memory rausschreiben #pragma unroll 16 for(int k=0;k<16;k++) ((uint32_t*)outputHash)[16*hashPosition+k] = hash[k]; } } // ---------------------------- END CUDA keccak512 functions ------------------------------------ // Setup-Funktionen __host__ void keccak512_cpu_init(int thr_id, int threads) { // Kopiere die Hash-Tabellen in den GPU-Speicher cudaMemcpyToSymbol( c_keccak_round_constants, host_keccak_round_constants, sizeof(host_keccak_round_constants), 0, cudaMemcpyHostToDevice); // Speicher für alle Ergebnisse belegen cudaMalloc(&d_hash3output[thr_id], 16 * sizeof(uint32_t) * threads); } // ----------------BEGIN keccak512 CPU version from scrypt-jane code -------------------- #define SCRYPT_HASH_DIGEST_SIZE 64 #define SCRYPT_KECCAK_F 1600 #define SCRYPT_KECCAK_C (SCRYPT_HASH_DIGEST_SIZE * 8 * 2) /* 1024 */ #define SCRYPT_KECCAK_R (SCRYPT_KECCAK_F - SCRYPT_KECCAK_C) /* 576 */ #define SCRYPT_HASH_BLOCK_SIZE (SCRYPT_KECCAK_R / 8) /* 72 */ // --------------- END keccak512 CPU version from scrypt-jane code -------------------- __host__ void keccak512_cpu_setBlock(void *data) // data muss 84-Byte haben! // heftyHash hat 32-Byte { // CH // state init uint64_t keccak_cpu_state[25]; memset(keccak_cpu_state, 0, 200); // keccak hat 72-Byte blöcke, d.h. in unserem Fall zwei Blöcke // zu jeweils uint32_t msgBlock[18]; memset(msgBlock, 0, 18 * sizeof(uint32_t)); // kopiere die Daten rein (aber nur alles nach Bit 72) memcpy(&msgBlock[0], &((uint8_t*)data)[72], 12); // Nachricht abschließen msgBlock[11] = 0x01; msgBlock[17] = 0x80000000; // erste Runde keccak_block((uint64_t*)&keccak_cpu_state, (const uint32_t*)data, host_keccak_round_constants); // Message 2 ins Constant Memory kopieren (die variable Nonce und // der Hefty1 Anteil muss aber auf der GPU erst noch ersetzt werden) cudaMemcpyToSymbol( c_PaddedMessage2, msgBlock, 18*sizeof(uint32_t), 0, cudaMemcpyHostToDevice ); // state kopieren cudaMemcpyToSymbol( c_State, keccak_cpu_state, 25*sizeof(uint64_t), 0, cudaMemcpyHostToDevice); } __host__ void keccak512_cpu_copyHeftyHash(int thr_id, int threads, void *heftyHashes, int copy) { // Hefty1 Hashes kopieren if (copy) cudaMemcpy( d_heftyHashes[thr_id], heftyHashes, 8 * sizeof(uint32_t) * threads, cudaMemcpyHostToDevice ); //else cudaThreadSynchronize(); } __host__ void keccak512_cpu_hash(int thr_id, int threads, uint32_t startNounce) { const int threadsperblock = 128; // berechne wie viele Thread Blocks wir brauchen dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); // Größe des dynamischen Shared Memory Bereichs (abhängig von der Threadanzahl) size_t shared_size = 0; // fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); keccak512_gpu_hash<<>>(threads, startNounce, d_hash3output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]); }