extern "C" { #include "sph/sph_blake.h" #include "sph/sph_bmw.h" #include "sph/sph_groestl.h" #include "sph/sph_skein.h" #include "sph/sph_jh.h" #include "sph/sph_keccak.h" #include "sph/sph_luffa.h" #include "sph/sph_cubehash.h" #include "sph/sph_shavite.h" #include "sph/sph_simd.h" #include "sph/sph_echo.h" } #include "miner.h" #include "cuda_helper.h" #include "cuda_x11.h" void tribus_echo512_final(int thr_id, uint32_t threads, uint32_t *d_hash, uint32_t *d_resNonce, const uint64_t target); #include #include static uint32_t *d_hash[MAX_GPUS]; static uint32_t *d_resNonce[MAX_GPUS]; // Flax/Chaincoin C11 CPU Hash extern "C" void c11hash(void *output, const void *input) { unsigned char hash[128] = { 0 }; sph_blake512_context ctx_blake; sph_bmw512_context ctx_bmw; sph_groestl512_context ctx_groestl; sph_jh512_context ctx_jh; sph_keccak512_context ctx_keccak; sph_skein512_context ctx_skein; sph_luffa512_context ctx_luffa; sph_cubehash512_context ctx_cubehash; sph_shavite512_context ctx_shavite; sph_simd512_context ctx_simd; sph_echo512_context ctx_echo; sph_blake512_init(&ctx_blake); sph_blake512 (&ctx_blake, input, 80); sph_blake512_close(&ctx_blake, (void*) hash); sph_bmw512_init(&ctx_bmw); sph_bmw512 (&ctx_bmw, (const void*) hash, 64); sph_bmw512_close(&ctx_bmw, (void*) hash); sph_groestl512_init(&ctx_groestl); sph_groestl512 (&ctx_groestl, (const void*) hash, 64); sph_groestl512_close(&ctx_groestl, (void*) hash); sph_jh512_init(&ctx_jh); sph_jh512 (&ctx_jh, (const void*) hash, 64); sph_jh512_close(&ctx_jh, (void*) hash); sph_keccak512_init(&ctx_keccak); sph_keccak512 (&ctx_keccak, (const void*) hash, 64); sph_keccak512_close(&ctx_keccak, (void*) hash); sph_skein512_init(&ctx_skein); sph_skein512 (&ctx_skein, (const void*) hash, 64); sph_skein512_close(&ctx_skein, (void*) hash); sph_luffa512_init(&ctx_luffa); sph_luffa512 (&ctx_luffa, (const void*) hash, 64); sph_luffa512_close (&ctx_luffa, (void*) hash); sph_cubehash512_init(&ctx_cubehash); sph_cubehash512 (&ctx_cubehash, (const void*) hash, 64); sph_cubehash512_close(&ctx_cubehash, (void*) hash); sph_shavite512_init(&ctx_shavite); sph_shavite512 (&ctx_shavite, (const void*) hash, 64); sph_shavite512_close(&ctx_shavite, (void*) hash); sph_simd512_init(&ctx_simd); sph_simd512 (&ctx_simd, (const void*) hash, 64); sph_simd512_close(&ctx_simd, (void*) hash); sph_echo512_init(&ctx_echo); sph_echo512 (&ctx_echo, (const void*) hash, 64); sph_echo512_close(&ctx_echo, (void*) hash); memcpy(output, hash, 32); } #ifdef _DEBUG #define TRACE(algo) { \ if (max_nonce == 1 && pdata[19] <= 1) { \ uint32_t* debugbuf = NULL; \ cudaMallocHost(&debugbuf, 8*sizeof(uint32_t)); \ cudaMemcpy(debugbuf, d_hash[thr_id], 8*sizeof(uint32_t), cudaMemcpyDeviceToHost); \ printf("X11 %s %08x %08x %08x %08x...\n", algo, swab32(debugbuf[0]), swab32(debugbuf[1]), \ swab32(debugbuf[2]), swab32(debugbuf[3])); \ cudaFreeHost(debugbuf); \ } \ } #else #define TRACE(algo) {} #endif static bool init[MAX_GPUS] = { 0 }; static bool use_compat_kernels[MAX_GPUS] = { 0 }; extern "C" int scanhash_c11(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; int intensity = (device_sm[device_map[thr_id]] >= 500 && !is_windows()) ? 20 : 19; uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); // 19=256*256*8; //if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); if (opt_benchmark) ((uint32_t*)ptarget)[7] = 0x5; if (!init[thr_id]) { int dev_id = device_map[thr_id]; cudaSetDevice(dev_id); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); CUDA_LOG_ERROR(); } gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); cuda_get_arch(thr_id); use_compat_kernels[thr_id] = (cuda_arch[dev_id] < 500); quark_blake512_cpu_init(thr_id, throughput); quark_bmw512_cpu_init(thr_id, throughput); quark_groestl512_cpu_init(thr_id, throughput); quark_skein512_cpu_init(thr_id, throughput); quark_keccak512_cpu_init(thr_id, throughput); quark_jh512_cpu_init(thr_id, throughput); x11_luffaCubehash512_cpu_init(thr_id, throughput); x11_shavite512_cpu_init(thr_id, throughput); if (use_compat_kernels[thr_id]) x11_echo512_cpu_init(thr_id, throughput); if (x11_simd512_cpu_init(thr_id, throughput) != 0) { return 0; } CUDA_CALL_OR_RET_X(cudaMalloc(&d_hash[thr_id], 64 * throughput), 0); CUDA_SAFE_CALL(cudaMalloc(&d_resNonce[thr_id], 2 * sizeof(uint32_t))); cuda_check_cpu_init(thr_id, throughput); init[thr_id] = true; } uint32_t endiandata[20]; for (int k=0; k < 20; k++) be32enc(&endiandata[k], pdata[k]); quark_blake512_cpu_setBlock_80(thr_id, endiandata); if (use_compat_kernels[thr_id]) cuda_check_cpu_setTarget(ptarget); else cudaMemset(d_resNonce[thr_id], 0xFF, 2 * sizeof(uint32_t)); do { int order = 0; // Hash with CUDA quark_blake512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id]); order++; TRACE("blake :"); quark_bmw512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("bmw :"); quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("groestl:"); quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("jh512 :"); quark_keccak512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("keccak :"); quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("skein :"); x11_luffaCubehash512_cpu_hash_64(thr_id, throughput, d_hash[thr_id], order++); TRACE("luffa+c:"); x11_shavite512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("shavite:"); x11_simd512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("simd :"); if (use_compat_kernels[thr_id]) { x11_echo512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); work->nonces[0] = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]); work->nonces[1] = UINT32_MAX; } else { tribus_echo512_final(thr_id, throughput, d_hash[thr_id], d_resNonce[thr_id], AS_U64(&ptarget[6])); cudaMemcpy(&work->nonces[0], d_resNonce[thr_id], 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost); } *hashes_done = pdata[19] - first_nonce + throughput; if (work->nonces[0] != UINT32_MAX) { uint32_t _ALIGN(64) vhash[8]; const uint32_t Htarg = ptarget[7]; const uint32_t startNounce = pdata[19]; if (!use_compat_kernels[thr_id]) work->nonces[0] += startNounce; be32enc(&endiandata[19], work->nonces[0]); c11hash(vhash, endiandata); if (vhash[7] <= Htarg && fulltest(vhash, ptarget)) { work->valid_nonces = 1; work_set_target_ratio(work, vhash); if (work->nonces[1] != UINT32_MAX) { work->nonces[1] += startNounce; be32enc(&endiandata[19], work->nonces[1]); c11hash(vhash, endiandata); bn_set_target_ratio(work, vhash, 1); work->valid_nonces++; pdata[19] = max(work->nonces[0], work->nonces[1]) + 1; } else { pdata[19] = work->nonces[0] + 1; // cursor } return work->valid_nonces; } else if (vhash[7] > Htarg) { gpu_increment_reject(thr_id); if (!opt_quiet) gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", work->nonces[0]); cudaMemset(d_resNonce[thr_id], 0xFF, 2 * sizeof(uint32_t)); pdata[19] = work->nonces[0] + 1; continue; } } if ((uint64_t) throughput + pdata[19] >= max_nonce) { pdata[19] = max_nonce; break; } pdata[19] += throughput; } while (!work_restart[thr_id].restart); *hashes_done = pdata[19] - first_nonce; return 0; } // cleanup extern "C" void free_c11(int thr_id) { if (!init[thr_id]) return; cudaThreadSynchronize(); cudaFree(d_hash[thr_id]); cudaFree(d_resNonce[thr_id]); quark_blake512_cpu_free(thr_id); quark_groestl512_cpu_free(thr_id); x11_simd512_cpu_free(thr_id); cuda_check_cpu_free(thr_id); init[thr_id] = false; cudaDeviceSynchronize(); }