#include #include #include "cuda_helper.h" #define ROTR(x,n) ROTR64(x,n) #define USE_SHUFFLE 0 __constant__ uint64_t c_PaddedMessage80[16]; // padded message (80 bytes + padding) // ---------------------------- BEGIN CUDA quark_blake512 functions ------------------------------------ __constant__ uint8_t c_sigma[16][16]; const uint8_t host_sigma[16][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, {12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, {13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, {10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } }; __device__ __constant__ const uint64_t c_u512[16] = { 0x243f6a8885a308d3ULL, 0x13198a2e03707344ULL, 0xa4093822299f31d0ULL, 0x082efa98ec4e6c89ULL, 0x452821e638d01377ULL, 0xbe5466cf34e90c6cULL, 0xc0ac29b7c97c50ddULL, 0x3f84d5b5b5470917ULL, 0x9216d5d98979fb1bULL, 0xd1310ba698dfb5acULL, 0x2ffd72dbd01adfb7ULL, 0xb8e1afed6a267e96ULL, 0xba7c9045f12c7f99ULL, 0x24a19947b3916cf7ULL, 0x0801f2e2858efc16ULL, 0x636920d871574e69ULL }; #define G(a,b,c,d,x) { \ uint32_t idx1 = sigma[i][x]; \ uint32_t idx2 = sigma[i][x+1]; \ v[a] += (m[idx1] ^ u512[idx2]) + v[b]; \ v[d] = SWAPDWORDS(v[d] ^ v[a]); \ v[c] += v[d]; \ v[b] = ROTR( v[b] ^ v[c], 25); \ v[a] += (m[idx2] ^ u512[idx1]) + v[b]; \ v[d] = ROTR( v[d] ^ v[a], 16); \ v[c] += v[d]; \ v[b] = ROTR( v[b] ^ v[c], 11); \ } __device__ __forceinline__ void quark_blake512_compress( uint64_t *h, const uint64_t *block, const uint8_t ((*sigma)[16]), const uint64_t *u512, const int T0) { uint64_t v[16]; uint64_t m[16]; #pragma unroll for(int i=0; i < 16; i++) { m[i] = cuda_swab64(block[i]); } //#pragma unroll 8 for(int i=0; i < 8; i++) v[i] = h[i]; v[ 8] = u512[0]; v[ 9] = u512[1]; v[10] = u512[2]; v[11] = u512[3]; v[12] = u512[4] ^ T0; v[13] = u512[5] ^ T0; v[14] = u512[6]; v[15] = u512[7]; //#pragma unroll 16 for(int i=0; i < 16; i++) { /* column step */ G( 0, 4, 8, 12, 0 ); G( 1, 5, 9, 13, 2 ); G( 2, 6, 10, 14, 4 ); G( 3, 7, 11, 15, 6 ); /* diagonal step */ G( 0, 5, 10, 15, 8 ); G( 1, 6, 11, 12, 10 ); G( 2, 7, 8, 13, 12 ); G( 3, 4, 9, 14, 14 ); } h[0] ^= v[0] ^ v[8]; h[1] ^= v[1] ^ v[9]; h[2] ^= v[2] ^ v[10]; h[3] ^= v[3] ^ v[11]; h[4] ^= v[4] ^ v[12]; h[5] ^= v[5] ^ v[13]; h[6] ^= v[6] ^ v[14]; h[7] ^= v[7] ^ v[15]; } // Hash-Padding __device__ __constant__ static const uint64_t d_constHashPadding[8] = { 0x0000000000000080ull, 0, 0, 0, 0, 0x0100000000000000ull, 0, 0x0002000000000000ull }; __global__ __launch_bounds__(256, 4) void quark_blake512_gpu_hash_64(uint32_t threads, uint32_t startNounce, uint32_t *g_nonceVector, uint64_t *g_hash) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); #if USE_SHUFFLE const int warpID = threadIdx.x & 0x0F; // 16 warps const int warpBlockID = (thread + 15)>>4; // aufrunden auf volle Warp-Blöcke const int maxHashPosition = thread<<3; #endif #if USE_SHUFFLE if (warpBlockID < ( (threads+15)>>4 )) #else if (thread < threads) #endif { uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); int hashPosition = nounce - startNounce; uint64_t *inpHash = &g_hash[hashPosition<<3]; // hashPosition * 8 // 128 Bytes uint64_t buf[16]; // State uint64_t h[8] = { 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL }; // Message for first round #pragma unroll 8 for (int i=0; i < 8; ++i) buf[i] = inpHash[i]; #pragma unroll 8 for (int i=0; i < 8; i++) buf[i+8] = d_constHashPadding[i]; // Ending round quark_blake512_compress( h, buf, c_sigma, c_u512, 512 ); #if __CUDA_ARCH__ <= 350 uint32_t *outHash = (uint32_t*)&g_hash[8 * hashPosition]; #pragma unroll 8 for (int i=0; i < 8; i++) { outHash[2*i+0] = cuda_swab32( _HIWORD(h[i]) ); outHash[2*i+1] = cuda_swab32( _LOWORD(h[i]) ); } #else uint64_t *outHash = &g_hash[8 * hashPosition]; for (int i=0; i < 8; i++) { outHash[i] = cuda_swab64(h[i]); } #endif } } __global__ void quark_blake512_gpu_hash_80(uint32_t threads, uint32_t startNounce, void *outputHash) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint64_t buf[16]; uint32_t nounce = startNounce + thread; uint64_t h[8] = { 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL }; // Message für die erste Runde in Register holen #pragma unroll 16 for (int i=0; i < 16; ++i) buf[i] = c_PaddedMessage80[i]; // The test Nonce ((uint32_t*)buf)[19] = cuda_swab32(nounce); quark_blake512_compress( h, buf, c_sigma, c_u512, 640 ); #if __CUDA_ARCH__ <= 350 uint32_t *outHash = (uint32_t *)outputHash + 16 * thread; #pragma unroll 8 for (uint32_t i=0; i < 8; i++) { outHash[2*i] = cuda_swab32( _HIWORD(h[i]) ); outHash[2*i+1] = cuda_swab32( _LOWORD(h[i]) ); } #else uint64_t *outHash = (uint64_t *)outputHash + 8 * thread; for (uint32_t i=0; i < 8; i++) { outHash[i] = cuda_swab64( h[i] ); } #endif } } // ---------------------------- END CUDA quark_blake512 functions ------------------------------------ __host__ void quark_blake512_cpu_init(int thr_id, uint32_t threads) { // Kopiere die Hash-Tabellen in den GPU-Speicher CUDA_CALL_OR_RET( cudaMemcpyToSymbol(c_sigma, host_sigma, sizeof(host_sigma), 0, cudaMemcpyHostToDevice)); } // Blake512 für 80 Byte grosse Eingangsdaten __host__ void quark_blake512_cpu_setBlock_80(void *pdata) { // Message mit Padding bereitstellen // lediglich die korrekte Nonce ist noch ab Byte 76 einzusetzen. unsigned char PaddedMessage[128]; memcpy(PaddedMessage, pdata, 80); memset(PaddedMessage+80, 0, 48); PaddedMessage[80] = 0x80; PaddedMessage[111] = 1; PaddedMessage[126] = 0x02; PaddedMessage[127] = 0x80; CUDA_SAFE_CALL( cudaMemcpyToSymbol(c_PaddedMessage80, PaddedMessage, 16*sizeof(uint64_t), 0, cudaMemcpyHostToDevice) ); } __host__ void quark_blake512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_outputHash, int order) { const uint32_t threadsperblock = 256; // berechne wie viele Thread Blocks wir brauchen dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); quark_blake512_gpu_hash_64<<>>(threads, startNounce, d_nonceVector, (uint64_t*)d_outputHash); // Strategisches Sleep Kommando zur Senkung der CPU Last //MyStreamSynchronize(NULL, order, thr_id); } __host__ void quark_blake512_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_outputHash, int order) { const uint32_t threadsperblock = 256; dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); quark_blake512_gpu_hash_80<<>>(threads, startNounce, d_outputHash); }