/* Based on djm code */ #include #include "miner.h" #include "cuda_helper.h" #include static uint32_t *d_hash[MAX_GPUS] ; extern void pluck_setBlockTarget(const void* data, const void *ptarget); extern void pluck_cpu_init(int thr_id, uint32_t threads, uint32_t *d_outputHash); extern uint32_t pluck_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, int order); extern float tp_coef[MAX_GPUS]; #define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) //note, this is 64 bytes static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16]) { #define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) uint32_t x00, x01, x02, x03, x04, x05, x06, x07, x08, x09, x10, x11, x12, x13, x14, x15; int i; x00 = (B[0] ^= Bx[0]); x01 = (B[1] ^= Bx[1]); x02 = (B[2] ^= Bx[2]); x03 = (B[3] ^= Bx[3]); x04 = (B[4] ^= Bx[4]); x05 = (B[5] ^= Bx[5]); x06 = (B[6] ^= Bx[6]); x07 = (B[7] ^= Bx[7]); x08 = (B[8] ^= Bx[8]); x09 = (B[9] ^= Bx[9]); x10 = (B[10] ^= Bx[10]); x11 = (B[11] ^= Bx[11]); x12 = (B[12] ^= Bx[12]); x13 = (B[13] ^= Bx[13]); x14 = (B[14] ^= Bx[14]); x15 = (B[15] ^= Bx[15]); for (i = 0; i < 8; i += 2) { /* Operate on columns. */ x04 ^= ROTL(x00 + x12, 7); x09 ^= ROTL(x05 + x01, 7); x14 ^= ROTL(x10 + x06, 7); x03 ^= ROTL(x15 + x11, 7); x08 ^= ROTL(x04 + x00, 9); x13 ^= ROTL(x09 + x05, 9); x02 ^= ROTL(x14 + x10, 9); x07 ^= ROTL(x03 + x15, 9); x12 ^= ROTL(x08 + x04, 13); x01 ^= ROTL(x13 + x09, 13); x06 ^= ROTL(x02 + x14, 13); x11 ^= ROTL(x07 + x03, 13); x00 ^= ROTL(x12 + x08, 18); x05 ^= ROTL(x01 + x13, 18); x10 ^= ROTL(x06 + x02, 18); x15 ^= ROTL(x11 + x07, 18); /* Operate on rows. */ x01 ^= ROTL(x00 + x03, 7); x06 ^= ROTL(x05 + x04, 7); x11 ^= ROTL(x10 + x09, 7); x12 ^= ROTL(x15 + x14, 7); x02 ^= ROTL(x01 + x00, 9); x07 ^= ROTL(x06 + x05, 9); x08 ^= ROTL(x11 + x10, 9); x13 ^= ROTL(x12 + x15, 9); x03 ^= ROTL(x02 + x01, 13); x04 ^= ROTL(x07 + x06, 13); x09 ^= ROTL(x08 + x11, 13); x14 ^= ROTL(x13 + x12, 13); x00 ^= ROTL(x03 + x02, 18); x05 ^= ROTL(x04 + x07, 18); x10 ^= ROTL(x09 + x08, 18); x15 ^= ROTL(x14 + x13, 18); } B[0] += x00; B[1] += x01; B[2] += x02; B[3] += x03; B[4] += x04; B[5] += x05; B[6] += x06; B[7] += x07; B[8] += x08; B[9] += x09; B[10] += x10; B[11] += x11; B[12] += x12; B[13] += x13; B[14] += x14; B[15] += x15; #undef ROTL } static void sha256_hash(uchar *hash, const uchar *data, int len) { SHA256_CTX ctx; SHA256_Init(&ctx); SHA256_Update(&ctx, data, len); SHA256_Final(hash, &ctx); } // hash exactly 64 bytes (ie, sha256 block size) static void sha256_hash512(uint32_t *hash, const uint32_t *data) { uint32_t _ALIGN(64) S[16]; uint32_t _ALIGN(64) T[16]; uchar _ALIGN(64) E[64] = { 0 }; int i; sha256_init(S); for (i = 0; i < 16; i++) T[i] = be32dec(&data[i]); sha256_transform(S, T, 0); E[3] = 0x80; E[61] = 0x02; // T[15] = 8 * 64 => 0x200; sha256_transform(S, (uint32_t*)E, 0); for (i = 0; i < 8; i++) be32enc(&hash[i], S[i]); } #define BLOCK_HEADER_SIZE 80 void pluckhash(uint32_t *hash, const uint32_t *data, uchar *hashbuffer, const int N) { int size = N * 1024; sha256_hash(hashbuffer, (uchar*)data, BLOCK_HEADER_SIZE); memset(&hashbuffer[32], 0, 32); for (int i = 64; i < size - 32; i += 32) { uint32_t _ALIGN(64) randseed[16]; uint32_t _ALIGN(64) randbuffer[16]; uint32_t _ALIGN(64) joint[16]; //i-4 because we use integers for all references against this, and we don't want to go 3 bytes over the defined area //we could use size here, but then it's probable to use 0 as the value in most cases int randmax = i - 4; //setup randbuffer to be an array of random indexes memcpy(randseed, &hashbuffer[i - 64], 64); if (i > 128) memcpy(randbuffer, &hashbuffer[i - 128], 64); else memset(randbuffer, 0, 64); xor_salsa8((uint32_t*)randbuffer, (uint32_t*)randseed); memcpy(joint, &hashbuffer[i - 32], 32); //use the last hash value as the seed for (int j = 32; j < 64; j += 4) { //every other time, change to next random index //randmax - 32 as otherwise we go beyond memory that's already been written to uint32_t rand = randbuffer[(j - 32) >> 2] % (randmax - 32); joint[j >> 2] = *((uint32_t *)&hashbuffer[rand]); } sha256_hash512((uint32_t*)&hashbuffer[i], joint); //setup randbuffer to be an array of random indexes //use last hash value and previous hash value(post-mixing) memcpy(randseed, &hashbuffer[i - 32], 64); if (i > 128) memcpy(randbuffer, &hashbuffer[i - 128], 64); else memset(randbuffer, 0, 64); xor_salsa8((uint32_t*)randbuffer, (uint32_t*)randseed); //use the last hash value as the seed for (int j = 0; j < 32; j += 2) { uint32_t rand = randbuffer[j >> 1] % randmax; *((uint32_t *)(hashbuffer + rand)) = *((uint32_t *)(hashbuffer + j + randmax)); } } memcpy(hash, hashbuffer, 32); } static bool init[MAX_GPUS] = { 0 }; static __thread uchar* scratchbuf = NULL; extern "C" int scanhash_pluck(int thr_id, uint32_t *pdata, const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done) { const uint32_t first_nonce = pdata[19]; uint32_t endiandata[20]; int opt_pluck_n = 128; int intensity = is_windows() ? 17 : 19; /* beware > 20 could work and create diff problems later */ uint32_t throughput = device_intensity(thr_id, __func__, 1U << intensity); // divide by 128 for this algo which require a lot of memory throughput = throughput / 128 - 256; throughput = min(throughput, max_nonce - first_nonce + 1); if (opt_benchmark) ((uint32_t*)ptarget)[7] = 0x0000ff; if (!init[thr_id]) { cudaSetDevice(device_map[thr_id]); //cudaDeviceReset(); //cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); //cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); cudaMalloc(&d_hash[thr_id], opt_pluck_n * 1024 * throughput); if (!scratchbuf) scratchbuf = (uchar*) calloc(opt_pluck_n, 1024); pluck_cpu_init(thr_id, throughput, d_hash[thr_id]); init[thr_id] = true; } for (int k = 0; k < 20; k++) be32enc(&endiandata[k], ((uint32_t*)pdata)[k]); pluck_setBlockTarget(endiandata,ptarget); do { uint32_t foundNonce = pluck_cpu_hash(thr_id, throughput, pdata[19], 0); if (foundNonce != UINT32_MAX) { const uint32_t Htarg = ptarget[7]; uint32_t vhash64[8]; be32enc(&endiandata[19], foundNonce); pluckhash(vhash64, endiandata, scratchbuf, opt_pluck_n); if (vhash64[7] <= Htarg && fulltest(vhash64, ptarget)) { *hashes_done = pdata[19] - first_nonce + throughput; pdata[19] = foundNonce; return 1; } else { applog(LOG_INFO, "GPU #%d: result for %08x does not validate on CPU!", thr_id, foundNonce); } } pdata[19] += throughput; } while (pdata[19] < max_nonce && !work_restart[thr_id].restart); *hashes_done = pdata[19] - first_nonce; return 0; }