extern "C" { #include "sph/sph_blake.h" #include "sph/sph_bmw.h" #include "sph/sph_groestl.h" #include "sph/sph_skein.h" #include "sph/sph_jh.h" #include "sph/sph_keccak.h" } #include "miner.h" #include "cuda_helper.h" #include "cuda_quark.h" static uint32_t *d_hash[MAX_GPUS]; // Speicher zur Generierung der Noncevektoren für die bedingten Hashes static uint32_t *d_branch1Nonces[MAX_GPUS]; static uint32_t *d_branch2Nonces[MAX_GPUS]; static uint32_t *d_branch3Nonces[MAX_GPUS]; // Original Quarkhash Funktion aus einem miner Quelltext extern "C" void quarkhash(void *state, const void *input) { unsigned char _ALIGN(128) hash[64]; sph_blake512_context ctx_blake; sph_bmw512_context ctx_bmw; sph_groestl512_context ctx_groestl; sph_jh512_context ctx_jh; sph_keccak512_context ctx_keccak; sph_skein512_context ctx_skein; sph_blake512_init(&ctx_blake); sph_blake512 (&ctx_blake, input, 80); sph_blake512_close(&ctx_blake, (void*) hash); sph_bmw512_init(&ctx_bmw); sph_bmw512 (&ctx_bmw, (const void*) hash, 64); sph_bmw512_close(&ctx_bmw, (void*) hash); if (hash[0] & 0x8) { sph_groestl512_init(&ctx_groestl); sph_groestl512 (&ctx_groestl, (const void*) hash, 64); sph_groestl512_close(&ctx_groestl, (void*) hash); } else { sph_skein512_init(&ctx_skein); sph_skein512 (&ctx_skein, (const void*) hash, 64); sph_skein512_close(&ctx_skein, (void*) hash); } sph_groestl512_init(&ctx_groestl); sph_groestl512 (&ctx_groestl, (const void*) hash, 64); sph_groestl512_close(&ctx_groestl, (void*) hash); sph_jh512_init(&ctx_jh); sph_jh512 (&ctx_jh, (const void*) hash, 64); sph_jh512_close(&ctx_jh, (void*) hash); if (hash[0] & 0x8) { sph_blake512_init(&ctx_blake); sph_blake512 (&ctx_blake, (const void*) hash, 64); sph_blake512_close(&ctx_blake, (void*) hash); } else { sph_bmw512_init(&ctx_bmw); sph_bmw512 (&ctx_bmw, (const void*) hash, 64); sph_bmw512_close(&ctx_bmw, (void*) hash); } sph_keccak512_init(&ctx_keccak); sph_keccak512 (&ctx_keccak, (const void*) hash, 64); sph_keccak512_close(&ctx_keccak, (void*) hash); sph_skein512_init(&ctx_skein); sph_skein512 (&ctx_skein, (const void*) hash, 64); sph_skein512_close(&ctx_skein, (void*) hash); if (hash[0] & 0x8) { sph_keccak512_init(&ctx_keccak); sph_keccak512 (&ctx_keccak, (const void*) hash, 64); sph_keccak512_close(&ctx_keccak, (void*) hash); } else { sph_jh512_init(&ctx_jh); sph_jh512 (&ctx_jh, (const void*) hash, 64); sph_jh512_close(&ctx_jh, (void*) hash); } memcpy(state, hash, 32); } #ifdef _DEBUG #define TRACE(algo) { \ if (max_nonce == 1 && pdata[19] <= 1) { \ uint32_t* debugbuf = NULL; \ cudaMallocHost(&debugbuf, 8*sizeof(uint32_t)); \ cudaMemcpy(debugbuf, d_hash[thr_id], 8*sizeof(uint32_t), cudaMemcpyDeviceToHost); \ printf("quark %s %08x %08x %08x %08x...\n", algo, swab32(debugbuf[0]), swab32(debugbuf[1]), \ swab32(debugbuf[2]), swab32(debugbuf[3])); \ cudaFreeHost(debugbuf); \ } \ } #else #define TRACE(algo) {} #endif static bool init[MAX_GPUS] = { 0 }; extern "C" int scanhash_quark(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t _ALIGN(64) endiandata[20]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; int dev_id = device_map[thr_id]; uint32_t throughput = cuda_default_throughput(thr_id, 1U << 20); // 256*4096 if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); if (opt_benchmark) ptarget[7] = 0x00F; if (!init[thr_id]) { cudaSetDevice(device_map[thr_id]); cudaGetLastError(); CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput)); quark_blake512_cpu_init(thr_id, throughput); quark_groestl512_cpu_init(thr_id, throughput); quark_skein512_cpu_init(thr_id, throughput); quark_bmw512_cpu_init(thr_id, throughput); quark_keccak512_cpu_init(thr_id, throughput); quark_jh512_cpu_init(thr_id, throughput); cuda_check_cpu_init(thr_id, throughput); quark_compactTest_cpu_init(thr_id, throughput); cudaMalloc(&d_branch1Nonces[thr_id], sizeof(uint32_t)*throughput); cudaMalloc(&d_branch2Nonces[thr_id], sizeof(uint32_t)*throughput); cudaMalloc(&d_branch3Nonces[thr_id], sizeof(uint32_t)*throughput); CUDA_SAFE_CALL(cudaGetLastError()); if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300) { gpulog(LOG_ERR, thr_id, "Device SM 3.0 or more recent required!"); proper_exit(1); return -1; } init[thr_id] = true; } for (int k=0; k < 20; k++) be32enc(&endiandata[k], pdata[k]); quark_blake512_cpu_setBlock_80(thr_id, endiandata); cuda_check_cpu_setTarget(ptarget); do { int order = 0; uint32_t nrm1=0, nrm2=0, nrm3=0; quark_blake512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id]); order++; TRACE("blake :"); // das ist der unbedingte Branch für BMW512 quark_bmw512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); quark_compactTest_single_false_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id], NULL, d_branch3Nonces[thr_id], &nrm3, order++); // nur den Skein Branch weiterverfolgen quark_skein512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); // das ist der unbedingte Branch für Groestl512 quark_groestl512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); // das ist der unbedingte Branch für JH512 quark_jh512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); // quarkNonces in branch1 und branch2 aufsplitten gemäss if (hash[0] & 0x8) quark_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id], d_branch1Nonces[thr_id], &nrm1, d_branch2Nonces[thr_id], &nrm2, order++); // das ist der bedingte Branch für Blake512 quark_blake512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++); // das ist der bedingte Branch für Bmw512 quark_bmw512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++); // das ist der unbedingte Branch für Keccak512 quark_keccak512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); // das ist der unbedingte Branch für Skein512 quark_skein512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); // quarkNonces in branch1 und branch2 aufsplitten gemäss if (hash[0] & 0x8) quark_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id], d_branch1Nonces[thr_id], &nrm1, d_branch2Nonces[thr_id], &nrm2, order++); quark_keccak512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++); quark_jh512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++); *hashes_done = pdata[19] - first_nonce + 1; uint32_t foundNonce = cuda_check_hash_branch(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); if (foundNonce != UINT32_MAX) { uint32_t vhash[8]; be32enc(&endiandata[19], foundNonce); quarkhash(vhash, endiandata); if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) { work_set_target_ratio(work, vhash); pdata[19] = foundNonce; return 1; } else { gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNonce); applog_hash((uchar*) vhash); applog_hash((uchar*) ptarget); } } pdata[19] += throughput; } while (pdata[19] < max_nonce && !work_restart[thr_id].restart); *hashes_done = pdata[19] - first_nonce + 1; return 0; } // cleanup extern "C" void free_quark(int thr_id) { if (!init[thr_id]) return; cudaThreadSynchronize(); cudaFree(d_hash[thr_id]); cudaFree(d_branch1Nonces[thr_id]); cudaFree(d_branch2Nonces[thr_id]); cudaFree(d_branch3Nonces[thr_id]); quark_blake512_cpu_free(thr_id); quark_groestl512_cpu_free(thr_id); quark_compactTest_cpu_free(thr_id); cuda_check_cpu_free(thr_id); init[thr_id] = false; cudaDeviceSynchronize(); }