/** * SKEIN512 80 + SHA256 64 * by tpruvot@github - 2015 */ extern "C" { #include "sph/sph_skein.h" } #include "miner.h" #include "cuda_helper.h" #include static uint32_t *d_hash[MAX_GPUS]; extern void skein512_cpu_setBlock_80(void *pdata); extern void skein512_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_hash, int swap); static __device__ __constant__ uint32_t sha256_hashTable[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; static __device__ __constant__ uint32_t sha256_constantTable[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; static __device__ __constant__ uint32_t sha256_endingTable[] = { 0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200, 0x80000000, 0x01400000, 0x00205000, 0x00005088, 0x22000800, 0x22550014, 0x05089742, 0xa0000020, 0x5a880000, 0x005c9400, 0x0016d49d, 0xfa801f00, 0xd33225d0, 0x11675959, 0xf6e6bfda, 0xb30c1549, 0x08b2b050, 0x9d7c4c27, 0x0ce2a393, 0x88e6e1ea, 0xa52b4335, 0x67a16f49, 0xd732016f, 0x4eeb2e91, 0x5dbf55e5, 0x8eee2335, 0xe2bc5ec2, 0xa83f4394, 0x45ad78f7, 0x36f3d0cd, 0xd99c05e8, 0xb0511dc7, 0x69bc7ac4, 0xbd11375b, 0xe3ba71e5, 0x3b209ff2, 0x18feee17, 0xe25ad9e7, 0x13375046, 0x0515089d, 0x4f0d0f04, 0x2627484e, 0x310128d2, 0xc668b434, 0x420841cc, 0x62d311b8, 0xe59ba771, 0x85a7a484 }; /* Elementary functions used by SHA256 */ #define SWAB32(x) cuda_swab32(x) //#define ROTR32(x,n) SPH_ROTR32(x,n) #define R(x, n) ((x) >> (n)) #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define S0(x) (ROTR32(x, 2) ^ ROTR32(x, 13) ^ ROTR32(x, 22)) #define S1(x) (ROTR32(x, 6) ^ ROTR32(x, 11) ^ ROTR32(x, 25)) #define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3)) #define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10)) #define ADVANCED_SHA2 #ifndef ADVANCED_SHA2 /* SHA256 round function */ #define RND(a, b, c, d, e, f, g, h, k) \ do { \ t0 = h + S1(e) + Ch(e, f, g) + k; \ t1 = S0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; \ } while (0) /* Adjusted round function for rotating state */ #define RNDr(S, W, i) \ RND(S[(64 - i) & 7], S[(65 - i) & 7], \ S[(66 - i) & 7], S[(67 - i) & 7], \ S[(68 - i) & 7], S[(69 - i) & 7], \ S[(70 - i) & 7], S[(71 - i) & 7], \ W[i] + sha256_constantTable[i]) static __constant__ uint32_t sha256_ending[16] = { 0x80000000UL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x200UL }; __device__ void sha256_transform_gpu(uint32_t *state, uint32_t *message) { uint32_t S[8]; uint32_t W[64]; uint32_t t0, t1; /* Initialize work variables. */ for (int i = 0; i < 8; i++) { S[i] = state[i]; } for (int i = 0; i < 16; i++) { W[i] = message[i]; } for (int i = 16; i < 64; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i + 1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } /* 3. Mix. */ RNDr(S, W, 0); RNDr(S, W, 1); RNDr(S, W, 2); RNDr(S, W, 3); RNDr(S, W, 4); RNDr(S, W, 5); RNDr(S, W, 6); RNDr(S, W, 7); RNDr(S, W, 8); RNDr(S, W, 9); RNDr(S, W, 10); RNDr(S, W, 11); RNDr(S, W, 12); RNDr(S, W, 13); RNDr(S, W, 14); RNDr(S, W, 15); RNDr(S, W, 16); RNDr(S, W, 17); RNDr(S, W, 18); RNDr(S, W, 19); RNDr(S, W, 20); RNDr(S, W, 21); RNDr(S, W, 22); RNDr(S, W, 23); RNDr(S, W, 24); RNDr(S, W, 25); RNDr(S, W, 26); RNDr(S, W, 27); RNDr(S, W, 28); RNDr(S, W, 29); RNDr(S, W, 30); RNDr(S, W, 31); RNDr(S, W, 32); RNDr(S, W, 33); RNDr(S, W, 34); RNDr(S, W, 35); RNDr(S, W, 36); RNDr(S, W, 37); RNDr(S, W, 38); RNDr(S, W, 39); RNDr(S, W, 40); RNDr(S, W, 41); RNDr(S, W, 42); RNDr(S, W, 43); RNDr(S, W, 44); RNDr(S, W, 45); RNDr(S, W, 46); RNDr(S, W, 47); RNDr(S, W, 48); RNDr(S, W, 49); RNDr(S, W, 50); RNDr(S, W, 51); RNDr(S, W, 52); RNDr(S, W, 53); RNDr(S, W, 54); RNDr(S, W, 55); RNDr(S, W, 56); RNDr(S, W, 57); RNDr(S, W, 58); RNDr(S, W, 59); RNDr(S, W, 60); RNDr(S, W, 61); RNDr(S, W, 62); RNDr(S, W, 63); for (int i = 0; i < 8; i++) state[i] += S[i]; } #endif #ifdef ADVANCED_SHA2 __device__ void skeincoin_gpu_sha256(uint32_t *message) { uint32_t W1[16]; uint32_t W2[16]; uint32_t regs[8]; uint32_t hash[8]; // Init with Hash-Table #pragma unroll 8 for (int k=0; k < 8; k++) { hash[k] = regs[k] = sha256_hashTable[k]; } #pragma unroll 16 for (int k = 0; k<16; k++) W1[k] = SWAB32(message[k]); // Progress W1 #pragma unroll 16 for (int j = 0; j<16; j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j] + W1[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int k = 6; k >= 0; k--) regs[k + 1] = regs[k]; regs[0] = T1 + T2; regs[4] += T1; } // Progress W2...W3 ////// PART 1 #pragma unroll 2 for (int j = 0; j<2; j++) W2[j] = s1(W1[14 + j]) + W1[9 + j] + s0(W1[1 + j]) + W1[j]; #pragma unroll 5 for (int j = 2; j<7; j++) W2[j] = s1(W2[j - 2]) + W1[9 + j] + s0(W1[1 + j]) + W1[j]; #pragma unroll 8 for (int j = 7; j<15; j++) W2[j] = s1(W2[j - 2]) + W2[j - 7] + s0(W1[1 + j]) + W1[j]; W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; // Round function #pragma unroll 16 for (int j = 0; j<16; j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j + 16] + W2[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int l = 6; l >= 0; l--) regs[l + 1] = regs[l]; regs[0] = T1 + T2; regs[4] += T1; } ////// PART 2 #pragma unroll 2 for (int j = 0; j<2; j++) W1[j] = s1(W2[14 + j]) + W2[9 + j] + s0(W2[1 + j]) + W2[j]; #pragma unroll 5 for (int j = 2; j<7; j++) W1[j] = s1(W1[j - 2]) + W2[9 + j] + s0(W2[1 + j]) + W2[j]; #pragma unroll 8 for (int j = 7; j<15; j++) W1[j] = s1(W1[j - 2]) + W1[j - 7] + s0(W2[1 + j]) + W2[j]; W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15]; // Round function #pragma unroll 16 for (int j = 0; j<16; j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j + 32] + W1[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int l = 6; l >= 0; l--) regs[l + 1] = regs[l]; regs[0] = T1 + T2; regs[4] += T1; } ////// PART 3 #pragma unroll 2 for (int j = 0; j<2; j++) W2[j] = s1(W1[14 + j]) + W1[9 + j] + s0(W1[1 + j]) + W1[j]; #pragma unroll 5 for (int j = 2; j<7; j++) W2[j] = s1(W2[j - 2]) + W1[9 + j] + s0(W1[1 + j]) + W1[j]; #pragma unroll 8 for (int j = 7; j<15; j++) W2[j] = s1(W2[j - 2]) + W2[j - 7] + s0(W1[1 + j]) + W1[j]; W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; // Round function #pragma unroll 16 for (int j = 0; j<16; j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j + 48] + W2[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int l = 6; l >= 0; l--) regs[l + 1] = regs[l]; regs[0] = T1 + T2; regs[4] += T1; } #pragma unroll 8 for (int k = 0; k<8; k++) hash[k] += regs[k]; #if 1 ///// ///// Second Pass (ending) ///// #pragma unroll 8 for (int k = 0; k<8; k++) regs[k] = hash[k]; // Progress W1 #pragma unroll 64 for (int j = 0; j<64; j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j] + sha256_endingTable[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int k = 6; k >= 0; k--) regs[k + 1] = regs[k]; regs[0] = T1 + T2; regs[4] += T1; } #pragma unroll 8 for (int k = 0; k<8; k++) hash[k] += regs[k]; // Final Hash #pragma unroll 8 for (int k = 0; k<8; k++) message[k] = SWAB32(hash[k]); #else // sha256_transform only, require an additional sha256_transform_gpu() call #pragma unroll 8 for (int k = 0; k<8; k++) message[k] = hash[k]; #endif } #endif __global__ void sha2_gpu_hash_64(uint32_t threads, uint32_t startNounce, uint32_t *hashBuffer) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint32_t *hash = &hashBuffer[thread << 4]; #ifdef ADVANCED_SHA2 skeincoin_gpu_sha256(hash); #else uint32_t state[16]; uint32_t msg[16]; #pragma unroll for (int i = 0; i < 8; i++) state[i] = sha256_hashTable[i]; #pragma unroll for (int i = 0; i < 16; i++) msg[i] = SWAB32(hash[i]); sha256_transform_gpu(state, msg); sha256_transform_gpu(state, sha256_ending); #pragma unroll for (int i = 0; i < 8; i++) hash[i] = SWAB32(state[i]); #endif } } __host__ void sha2_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_outputHashes, int order) { uint32_t threadsperblock = 128; dim3 block(threadsperblock); dim3 grid((threads + threadsperblock - 1) / threadsperblock); //cudaMemset(d_outputHashes, 0, 64 * threads); sha2_gpu_hash_64 <<< grid, block >>>(threads, startNounce, d_outputHashes); MyStreamSynchronize(NULL, 0, thr_id); } extern "C" void skeincoinhash(void *output, const void *input) { sph_skein512_context ctx_skein; SHA256_CTX sha256; uint32_t hash[16]; sph_skein512_init(&ctx_skein); sph_skein512(&ctx_skein, input, 80); sph_skein512_close(&ctx_skein, hash); SHA256_Init(&sha256); SHA256_Update(&sha256, (unsigned char *)hash, 64); SHA256_Final((unsigned char *)hash, &sha256); memcpy(output, hash, 32); } static __inline uint32_t swab32_if(uint32_t val, bool iftrue) { return iftrue ? swab32(val) : val; } static bool init[MAX_GPUS] = { 0 }; extern "C" int scanhash_skeincoin(int thr_id, uint32_t *pdata, const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done) { const uint32_t first_nonce = pdata[19]; const int swap = 1; uint32_t throughput = device_intensity(thr_id, __func__, 1 << 19); // 256*256*8 throughput = min(throughput, (max_nonce - first_nonce)); if (opt_benchmark) ((uint32_t*)ptarget)[7] = 0x07; if (!init[thr_id]) { cudaSetDevice(device_map[thr_id]); CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], 64 * throughput)); cuda_check_cpu_init(thr_id, throughput); init[thr_id] = true; } uint32_t endiandata[20]; for (int k=0; k < 20; k++) be32enc(&endiandata[k], pdata[k]); skein512_cpu_setBlock_80((void*)endiandata); cuda_check_cpu_setTarget(ptarget); do { int order = 0; *hashes_done = pdata[19] - first_nonce + throughput; // Hash with CUDA skein512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], swap); sha2_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id], order++); uint32_t foundNonce = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]); if (foundNonce != UINT32_MAX) { uint32_t vhash64[8]; endiandata[19] = swab32_if(foundNonce, swap); skeincoinhash(vhash64, endiandata); if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) { int res = 1; uint8_t num = res; uint32_t secNonce = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], num); while (secNonce != 0 && res < 6) { endiandata[19] = swab32_if(secNonce, swap); skeincoinhash(vhash64, endiandata); if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) { pdata[19+res] = swab32_if(secNonce, !swap); res++; } num++; secNonce = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], num); } if (res > 1 && opt_debug) applog(LOG_BLUE, "GPU #%d: %d/%d valid nonces !!!", device_map[thr_id], res, (int)num); pdata[19] = swab32_if(foundNonce, !swap); return res; } else { applog(LOG_INFO, "GPU #%d: result for nonce $%08X does not validate on CPU!", device_map[thr_id], foundNonce); // reinit card cudaDeviceReset(); init[thr_id] = false; } } pdata[19] += throughput; } while (pdata[19] < max_nonce && !work_restart[thr_id].restart); *hashes_done = pdata[19] - first_nonce + 1; return 0; }