#include <stdio.h> #include <memory.h> #include <string.h> #include <unistd.h> #include <map> // include thrust #ifndef __cplusplus #include <thrust/version.h> #include <thrust/remove.h> #include <thrust/device_vector.h> #include <thrust/iterator/constant_iterator.h> #else #include <ctype.h> #endif #include "miner.h" #include "nvml.h" #include "cuda_runtime.h" #ifdef __cplusplus /* miner.h functions are declared in C type, not C++ */ extern "C" { #endif // CUDA Devices on the System int cuda_num_devices() { int version; cudaError_t err = cudaDriverGetVersion(&version); if (err != cudaSuccess) { applog(LOG_ERR, "Unable to query CUDA driver version! Is an nVidia driver installed?"); exit(1); } int maj = version / 1000, min = version % 100; // same as in deviceQuery sample if (maj < 5 || (maj == 5 && min < 5)) { applog(LOG_ERR, "Driver does not support CUDA %d.%d API! Update your nVidia driver!", 5, 5); exit(1); } int GPU_N; err = cudaGetDeviceCount(&GPU_N); if (err != cudaSuccess) { applog(LOG_ERR, "Unable to query number of CUDA devices! Is an nVidia driver installed?"); exit(1); } return GPU_N; } int cuda_version() { return (int) CUDART_VERSION; } void cuda_devicenames() { cudaError_t err; int GPU_N; err = cudaGetDeviceCount(&GPU_N); if (err != cudaSuccess) { applog(LOG_ERR, "Unable to query number of CUDA devices! Is an nVidia driver installed?"); exit(1); } if (opt_n_threads) GPU_N = min(MAX_GPUS, opt_n_threads); for (int i=0; i < GPU_N; i++) { char vendorname[32] = { 0 }; int dev_id = device_map[i]; cudaDeviceProp props; cudaGetDeviceProperties(&props, dev_id); device_sm[dev_id] = (props.major * 100 + props.minor * 10); if (device_name[dev_id]) { free(device_name[dev_id]); device_name[dev_id] = NULL; } #ifdef USE_WRAPNVML if (gpu_vendor((uint8_t)props.pciBusID, vendorname) > 0 && strlen(vendorname)) { device_name[dev_id] = (char*) calloc(1, strlen(vendorname) + strlen(props.name) + 2); if (!strncmp(props.name, "GeForce ", 8)) sprintf(device_name[dev_id], "%s %s", vendorname, &props.name[8]); else sprintf(device_name[dev_id], "%s %s", vendorname, props.name); } else #endif device_name[dev_id] = strdup(props.name); } } void cuda_print_devices() { int ngpus = cuda_num_devices(); cuda_devicenames(); for (int n=0; n < ngpus; n++) { int dev_id = device_map[n % MAX_GPUS]; cudaDeviceProp props; cudaGetDeviceProperties(&props, dev_id); if (!opt_n_threads || n < opt_n_threads) { fprintf(stderr, "GPU #%d: SM %d.%d %s @ %.0f MHz (MEM %.0f)\n", dev_id, props.major, props.minor, device_name[dev_id], (double) props.clockRate/1000, (double) props.memoryClockRate/1000); #ifdef USE_WRAPNVML if (opt_debug) nvml_print_device_info(dev_id); #ifdef WIN32 if (opt_debug) nvapi_pstateinfo(dev_id); #endif #endif } } } void cuda_shutdown() { cudaDeviceSynchronize(); cudaDeviceReset(); } static bool substringsearch(const char *haystack, const char *needle, int &match) { int hlen = (int) strlen(haystack); int nlen = (int) strlen(needle); for (int i=0; i < hlen; ++i) { if (haystack[i] == ' ') continue; int j=0, x = 0; while(j < nlen) { if (haystack[i+x] == ' ') {++x; continue;} if (needle[j] == ' ') {++j; continue;} if (needle[j] == '#') return ++match == needle[j+1]-'0'; if (tolower(haystack[i+x]) != tolower(needle[j])) break; ++j; ++x; } if (j == nlen) return true; } return false; } // CUDA Gerät nach Namen finden (gibt Geräte-Index zurück oder -1) int cuda_finddevice(char *name) { int num = cuda_num_devices(); int match = 0; for (int i=0; i < num; ++i) { cudaDeviceProp props; if (cudaGetDeviceProperties(&props, i) == cudaSuccess) if (substringsearch(props.name, name, match)) return i; } return -1; } // since 1.7 uint32_t cuda_default_throughput(int thr_id, uint32_t defcount) { //int dev_id = device_map[thr_id % MAX_GPUS]; uint32_t throughput = gpus_intensity[thr_id] ? gpus_intensity[thr_id] : defcount; if (gpu_threads > 1 && throughput == defcount) throughput /= (gpu_threads-1); if (api_thr_id != -1) api_set_throughput(thr_id, throughput); //gpulog(LOG_INFO, thr_id, "throughput %u", throughput); return throughput; } // if we use 2 threads on the same gpu, we need to reinit the threads void cuda_reset_device(int thr_id, bool *init) { int dev_id = device_map[thr_id % MAX_GPUS]; cudaSetDevice(dev_id); if (init != NULL) { // with init array, its meant to be used in algo's scan code... for (int i=0; i < MAX_GPUS; i++) { if (device_map[i] == dev_id) { init[i] = false; } } // force exit from algo's scan loops/function restart_threads(); cudaDeviceSynchronize(); while (cudaStreamQuery(NULL) == cudaErrorNotReady) usleep(1000); } cudaDeviceReset(); if (opt_cudaschedule >= 0) { cudaSetDeviceFlags((unsigned)(opt_cudaschedule & cudaDeviceScheduleMask)); } else { cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); } cudaDeviceSynchronize(); } // return free memory in megabytes int cuda_available_memory(int thr_id) { int dev_id = device_map[thr_id % MAX_GPUS]; size_t mtotal = 0, mfree = 0; #if defined(_WIN32) && defined(USE_WRAPNVML) // cuda (6.5) one can crash on pascal and dont handle 8GB nvapiMemGetInfo(dev_id, &mfree, &mtotal); #else cudaSetDevice(dev_id); cudaDeviceSynchronize(); cudaMemGetInfo(&mfree, &mtotal); #endif return (int) (mfree / (1024 * 1024)); } // Check (and reset) last cuda error, and report it in logs void cuda_log_lasterror(int thr_id, const char* func, int line) { cudaError_t err = cudaGetLastError(); if (err != cudaSuccess && !opt_quiet) gpulog(LOG_WARNING, thr_id, "%s:%d %s", func, line, cudaGetErrorString(err)); } // Clear any cuda error in non-cuda unit (.c/.cpp) void cuda_clear_lasterror() { cudaGetLastError(); } #ifdef __cplusplus } /* extern "C" */ #endif int cuda_gpu_clocks(struct cgpu_info *gpu) { cudaDeviceProp props; if (cudaGetDeviceProperties(&props, gpu->gpu_id) == cudaSuccess) { gpu->gpu_clock = props.clockRate; gpu->gpu_memclock = props.memoryClockRate; gpu->gpu_mem = props.totalGlobalMem; return 0; } return -1; } // Zeitsynchronisations-Routine von cudaminer mit CPU sleep // Note: if you disable all of these calls, CPU usage will hit 100% typedef struct { double value[8]; } tsumarray; cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id) { cudaError_t result = cudaSuccess; if (abort_flag) return result; if (situation >= 0) { static std::map<int, tsumarray> tsum; double a = 0.95, b = 0.05; if (tsum.find(situation) == tsum.end()) { a = 0.5; b = 0.5; } // faster initial convergence double tsync = 0.0; double tsleep = 0.95 * tsum[situation].value[thr_id]; if (cudaStreamQuery(stream) == cudaErrorNotReady) { usleep((useconds_t)(1e6*tsleep)); struct timeval tv_start, tv_end; gettimeofday(&tv_start, NULL); result = cudaStreamSynchronize(stream); gettimeofday(&tv_end, NULL); tsync = 1e-6 * (tv_end.tv_usec-tv_start.tv_usec) + (tv_end.tv_sec-tv_start.tv_sec); } if (tsync >= 0) tsum[situation].value[thr_id] = a * tsum[situation].value[thr_id] + b * (tsleep+tsync); } else result = cudaStreamSynchronize(stream); return result; } void cudaReportHardwareFailure(int thr_id, cudaError_t err, const char* func) { struct cgpu_info *gpu = &thr_info[thr_id].gpu; gpu->hw_errors++; gpulog(LOG_ERR, thr_id, "%s %s", func, cudaGetErrorString(err)); sleep(1); }