#include #include #include #include "sph/sph_fugue.h" #include "miner.h" #include "cuda_fugue256.h" extern "C" void my_fugue256_init(void *cc); extern "C" void my_fugue256(void *cc, const void *data, size_t len); extern "C" void my_fugue256_close(void *cc, void *dst); extern "C" void my_fugue256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst); // vorbereitete Kontexte nach den ersten 80 Bytes // sph_fugue256_context ctx_fugue_const[MAX_GPUS]; #define SWAP32(x) \ ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | \ (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu)) void fugue256_hash(unsigned char* output, const unsigned char* input, int len) { sph_fugue256_context ctx; sph_fugue256_init(&ctx); sph_fugue256(&ctx, input, len); sph_fugue256_close(&ctx, (void *)output); } static bool init[MAX_GPUS] = { 0 }; int scanhash_fugue256(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t _ALIGN(64) endiandata[20]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; uint32_t start_nonce = pdata[19]++; int intensity = (device_sm[device_map[thr_id]] > 500) ? 22 : 19; uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); // 256*256*8 if (init[thr_id]) throughput = min(throughput, max_nonce - start_nonce); if (opt_benchmark) ((uint32_t*)ptarget)[7] = 0xf; // init if(!init[thr_id]) { cudaSetDevice(device_map[thr_id]); fugue256_cpu_init(thr_id, throughput); init[thr_id] = true; } // Endian for (int kk=0; kk < 20; kk++) be32enc(&endiandata[kk], pdata[kk]); // Context mit dem Endian gedrehten Blockheader vorbereiten (Nonce wird später ersetzt) fugue256_cpu_setBlock(thr_id, endiandata, (void*)ptarget); do { // GPU uint32_t foundNounce = UINT32_MAX; fugue256_cpu_hash(thr_id, throughput, pdata[19], NULL, &foundNounce); if (foundNounce < UINT32_MAX) { uint32_t vhash[8]; sph_fugue256_context ctx_fugue; endiandata[19] = SWAP32(foundNounce); sph_fugue256_init(&ctx_fugue); sph_fugue256 (&ctx_fugue, endiandata, 80); sph_fugue256_close(&ctx_fugue, &vhash); if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) { work_set_target_ratio(work, vhash); pdata[19] = foundNounce; *hashes_done = foundNounce - start_nonce + 1; return 1; } else { applog(LOG_WARNING, "GPU #%d: result for nonce %08x does not validate on CPU!", device_map[thr_id], foundNounce); } } if ((uint64_t) pdata[19] + throughput > (uint64_t) max_nonce) { pdata[19] = max_nonce; break; } pdata[19] += throughput; } while (!work_restart[thr_id].restart); *hashes_done = pdata[19] - start_nonce + 1; return 0; } // cleanup void free_fugue256(int thr_id) { if (!init[thr_id]) return; cudaSetDevice(device_map[thr_id]); fugue256_cpu_free(thr_id); init[thr_id] = false; cudaDeviceSynchronize(); }