extern "C" { #include "sph/sph_blake.h" #include "sph/sph_groestl.h" #include "sph/sph_skein.h" #include "sph/sph_keccak.h" #include "lyra2/Lyra2.h" } #include "miner.h" #include "cuda_helper.h" static uint64_t* d_hash[MAX_GPUS]; //static uint64_t* d_matrix[MAX_GPUS]; extern void blake256_cpu_init(int thr_id, uint32_t threads); extern void blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order); extern void blake256_cpu_setBlock_80(uint32_t *pdata); extern void keccak256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order); extern void keccak256_cpu_init(int thr_id, uint32_t threads); extern void keccak256_cpu_free(int thr_id); extern void skein256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order); extern void skein256_cpu_init(int thr_id, uint32_t threads); //extern void lyra2_cpu_init(int thr_id, uint32_t threads, uint64_t *hash); extern void lyra2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order); extern void groestl256_cpu_init(int thr_id, uint32_t threads); extern void groestl256_cpu_free(int thr_id); extern void groestl256_setTarget(const void *ptarget); extern uint32_t groestl256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order); extern uint32_t groestl256_getSecNonce(int thr_id, int num); #ifdef _DEBUG #define TRACE(algo) { \ if (max_nonce == 1 && pdata[19] <= 1) { \ uint32_t* debugbuf = NULL; \ cudaMallocHost(&debugbuf, 8*sizeof(uint32_t)); \ cudaMemcpy(debugbuf, d_hash[thr_id], 8*sizeof(uint32_t), cudaMemcpyDeviceToHost); \ printf("lyra %s %08x %08x %08x %08x...\n", algo, swab32(debugbuf[0]), swab32(debugbuf[1]), \ swab32(debugbuf[2]), swab32(debugbuf[3])); \ cudaFreeHost(debugbuf); \ } \ } #else #define TRACE(algo) {} #endif extern "C" void lyra2re_hash(void *state, const void *input) { uint32_t hashA[8], hashB[8]; sph_blake256_context ctx_blake; sph_keccak256_context ctx_keccak; sph_skein256_context ctx_skein; sph_groestl256_context ctx_groestl; sph_blake256_set_rounds(14); sph_blake256_init(&ctx_blake); sph_blake256(&ctx_blake, input, 80); sph_blake256_close(&ctx_blake, hashA); sph_keccak256_init(&ctx_keccak); sph_keccak256(&ctx_keccak, hashA, 32); sph_keccak256_close(&ctx_keccak, hashB); LYRA2(hashA, 32, hashB, 32, hashB, 32, 1, 8, 8); sph_skein256_init(&ctx_skein); sph_skein256(&ctx_skein, hashA, 32); sph_skein256_close(&ctx_skein, hashB); sph_groestl256_init(&ctx_groestl); sph_groestl256(&ctx_groestl, hashB, 32); sph_groestl256_close(&ctx_groestl, hashA); memcpy(state, hashA, 32); } static bool init[MAX_GPUS] = { 0 }; extern "C" int scanhash_lyra2(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; int intensity = (device_sm[device_map[thr_id]] >= 500 && !is_windows()) ? 18 : 17; uint32_t throughput = device_intensity(thr_id, __func__, 1U << intensity); // 18=256*256*4; throughput = min(throughput, max_nonce - first_nonce); if (opt_benchmark) ptarget[7] = 0x00ff; if (!init[thr_id]) { cudaSetDevice(device_map[thr_id]); cudaGetLastError(); // reset last error blake256_cpu_init(thr_id, throughput); keccak256_cpu_init(thr_id,throughput); skein256_cpu_init(thr_id, throughput); groestl256_cpu_init(thr_id, throughput); // DMatrix // cudaMalloc(&d_matrix[thr_id], (size_t)16 * 8 * 8 * sizeof(uint64_t) * throughput); // lyra2_cpu_init(thr_id, throughput, d_matrix[thr_id]); CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t)32 * throughput)); init[thr_id] = true; } uint32_t endiandata[20]; for (int k=0; k < 20; k++) be32enc(&endiandata[k], pdata[k]); blake256_cpu_setBlock_80(pdata); groestl256_setTarget(ptarget); do { int order = 0; uint32_t foundNonce; *hashes_done = pdata[19] - first_nonce + throughput; blake256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++); keccak256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); lyra2_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); skein256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); TRACE("S") foundNonce = groestl256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); if (foundNonce != UINT32_MAX) { uint32_t _ALIGN(64) vhash64[8]; be32enc(&endiandata[19], foundNonce); lyra2re_hash(vhash64, endiandata); if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) { int res = 1; uint32_t secNonce = groestl256_getSecNonce(thr_id, 1); work_set_target_ratio(work, vhash64); if (secNonce != UINT32_MAX) { be32enc(&endiandata[19], secNonce); lyra2re_hash(vhash64, endiandata); if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) { if (opt_debug) applog(LOG_BLUE, "GPU #%d: found second nonce %08x", device_map[thr_id], secNonce); if (bn_hash_target_ratio(vhash64, ptarget) > work->shareratio) work_set_target_ratio(work, vhash64); pdata[21] = secNonce; res++; } } pdata[19] = foundNonce; return res; } else { applog(LOG_WARNING, "GPU #%d: result for %08x does not validate on CPU!", device_map[thr_id], foundNonce); } } pdata[19] += throughput; } while (pdata[19] < max_nonce && !work_restart[thr_id].restart); return 0; } // cleanup extern "C" void free_lyra2(int thr_id) { if (!init[thr_id]) return; cudaSetDevice(device_map[thr_id]); cudaFree(d_hash[thr_id]); //cudaFree(d_matrix[thr_id]); keccak256_cpu_free(thr_id); groestl256_cpu_free(thr_id); init[thr_id] = false; cudaDeviceSynchronize(); }