/* * luffa_for_32.c * Version 2.0 (Sep 15th 2009) * * Copyright (C) 2008-2009 Hitachi, Ltd. All rights reserved. * * Hitachi, Ltd. is the owner of this software and hereby grant * the U.S. Government and any interested party the right to use * this software for the purposes of the SHA-3 evaluation process, * notwithstanding that this software is copyrighted. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "cuda_helper.h" typedef unsigned char BitSequence; typedef struct { uint32_t buffer[8]; /* Buffer to be hashed */ uint32_t chainv[40]; /* Chaining values */ } hashState; #define MULT2(a,j)\ tmp = a[7+(8*j)];\ a[7+(8*j)] = a[6+(8*j)];\ a[6+(8*j)] = a[5+(8*j)];\ a[5+(8*j)] = a[4+(8*j)];\ a[4+(8*j)] = a[3+(8*j)] ^ tmp;\ a[3+(8*j)] = a[2+(8*j)] ^ tmp;\ a[2+(8*j)] = a[1+(8*j)];\ a[1+(8*j)] = a[0+(8*j)] ^ tmp;\ a[0+(8*j)] = tmp; #if __CUDA_ARCH__ < 350 #define LROT(x,bits) ((x << bits) | (x >> (32 - bits))) #else #define LROT(x, bits) __funnelshift_l(x, x, bits) #endif #define TWEAK(a0,a1,a2,a3,j)\ a0 = LROT(a0,j);\ a1 = LROT(a1,j);\ a2 = LROT(a2,j);\ a3 = LROT(a3,j); #define STEP(c0,c1)\ SUBCRUMB(chainv[0],chainv[1],chainv[2],chainv[3],tmp);\ SUBCRUMB(chainv[5],chainv[6],chainv[7],chainv[4],tmp);\ MIXWORD(chainv[0],chainv[4]);\ MIXWORD(chainv[1],chainv[5]);\ MIXWORD(chainv[2],chainv[6]);\ MIXWORD(chainv[3],chainv[7]);\ ADD_CONSTANT(chainv[0],chainv[4],c0,c1); #define SUBCRUMB(a0,a1,a2,a3,a4)\ a4 = a0;\ a0 |= a1;\ a2 ^= a3;\ a1 = ~a1;\ a0 ^= a3;\ a3 &= a4;\ a1 ^= a3;\ a3 ^= a2;\ a2 &= a0;\ a0 = ~a0;\ a2 ^= a1;\ a1 |= a3;\ a4 ^= a1;\ a3 ^= a2;\ a2 &= a1;\ a1 ^= a0;\ a0 = a4; #define MIXWORD(a0,a4)\ a4 ^= a0;\ a0 = LROT(a0,2);\ a0 ^= a4;\ a4 = LROT(a4,14);\ a4 ^= a0;\ a0 = LROT(a0,10);\ a0 ^= a4;\ a4 = LROT(a4,1); #define ADD_CONSTANT(a0,b0,c0,c1)\ a0 ^= c0;\ b0 ^= c1; /* initial values of chaining variables */ __device__ __constant__ uint32_t c_IV[40]; const uint32_t h_IV[40] = { 0x6d251e69,0x44b051e0,0x4eaa6fb4,0xdbf78465, 0x6e292011,0x90152df4,0xee058139,0xdef610bb, 0xc3b44b95,0xd9d2f256,0x70eee9a0,0xde099fa3, 0x5d9b0557,0x8fc944b3,0xcf1ccf0e,0x746cd581, 0xf7efc89d,0x5dba5781,0x04016ce5,0xad659c05, 0x0306194f,0x666d1836,0x24aa230a,0x8b264ae7, 0x858075d5,0x36d79cce,0xe571f7d7,0x204b1f67, 0x35870c6a,0x57e9e923,0x14bcb808,0x7cde72ce, 0x6c68e9be,0x5ec41e22,0xc825b7c7,0xaffb4363, 0xf5df3999,0x0fc688f1,0xb07224cc,0x03e86cea}; __device__ __constant__ uint32_t c_CNS[80]; const uint32_t h_CNS[80] = { 0x303994a6,0xe0337818,0xc0e65299,0x441ba90d, 0x6cc33a12,0x7f34d442,0xdc56983e,0x9389217f, 0x1e00108f,0xe5a8bce6,0x7800423d,0x5274baf4, 0x8f5b7882,0x26889ba7,0x96e1db12,0x9a226e9d, 0xb6de10ed,0x01685f3d,0x70f47aae,0x05a17cf4, 0x0707a3d4,0xbd09caca,0x1c1e8f51,0xf4272b28, 0x707a3d45,0x144ae5cc,0xaeb28562,0xfaa7ae2b, 0xbaca1589,0x2e48f1c1,0x40a46f3e,0xb923c704, 0xfc20d9d2,0xe25e72c1,0x34552e25,0xe623bb72, 0x7ad8818f,0x5c58a4a4,0x8438764a,0x1e38e2e7, 0xbb6de032,0x78e38b9d,0xedb780c8,0x27586719, 0xd9847356,0x36eda57f,0xa2c78434,0x703aace7, 0xb213afa5,0xe028c9bf,0xc84ebe95,0x44756f91, 0x4e608a22,0x7e8fce32,0x56d858fe,0x956548be, 0x343b138f,0xfe191be2,0xd0ec4e3d,0x3cb226e5, 0x2ceb4882,0x5944a28e,0xb3ad2208,0xa1c4c355, 0xf0d2e9e3,0x5090d577,0xac11d7fa,0x2d1925ab, 0x1bcb66f2,0xb46496ac,0x6f2d9bc9,0xd1925ab0, 0x78602649,0x29131ab6,0x8edae952,0x0fc053c3, 0x3b6ba548,0x3f014f0c,0xedae9520,0xfc053c31}; /***************************************************/ __device__ __forceinline__ void rnd512(hashState *state) { int i,j; uint32_t t[40]; uint32_t chainv[8]; uint32_t tmp; #pragma unroll 8 for(i=0;i<8;i++) { t[i]=0; #pragma unroll 5 for(j=0;j<5;j++) { t[i] ^= state->chainv[i+8*j]; } } MULT2(t, 0); #pragma unroll 5 for(j=0;j<5;j++) { #pragma unroll 8 for(i=0;i<8;i++) { state->chainv[i+8*j] ^= t[i]; } } #pragma unroll 5 for(j=0;j<5;j++) { #pragma unroll 8 for(i=0;i<8;i++) { t[i+8*j] = state->chainv[i+8*j]; } } #pragma unroll 5 for(j=0;j<5;j++) { MULT2(state->chainv, j); } #pragma unroll 5 for(j=0;j<5;j++) { #pragma unroll 8 for(i=0;i<8;i++) { state->chainv[8*j+i] ^= t[8*((j+1)%5)+i]; } } #pragma unroll 5 for(j=0;j<5;j++) { #pragma unroll 8 for(i=0;i<8;i++) { t[i+8*j] = state->chainv[i+8*j]; } } #pragma unroll 5 for(j=0;j<5;j++) { MULT2(state->chainv, j); } #pragma unroll 5 for(j=0;j<5;j++) { #pragma unroll 8 for(i=0;i<8;i++) { state->chainv[8*j+i] ^= t[8*((j+4)%5)+i]; } } #pragma unroll 5 for(j=0;j<5;j++) { #pragma unroll 8 for(i=0;i<8;i++) { state->chainv[i+8*j] ^= state->buffer[i]; } MULT2(state->buffer, 0); } #pragma unroll 8 for(i=0;i<8;i++) { chainv[i] = state->chainv[i]; } #pragma unroll 8 for(i=0;i<8;i++) { STEP(c_CNS[(2*i)],c_CNS[(2*i)+1]); } #pragma unroll 8 for(i=0;i<8;i++) { state->chainv[i] = chainv[i]; chainv[i] = state->chainv[i+8]; } TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],1); #pragma unroll 8 for(i=0;i<8;i++) { STEP(c_CNS[(2*i)+16],c_CNS[(2*i)+16+1]); } #pragma unroll 8 for(i=0;i<8;i++) { state->chainv[i+8] = chainv[i]; chainv[i] = state->chainv[i+16]; } TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],2); #pragma unroll 8 for(i=0;i<8;i++) { STEP(c_CNS[(2*i)+32],c_CNS[(2*i)+32+1]); } #pragma unroll 8 for(i=0;i<8;i++) { state->chainv[i+16] = chainv[i]; chainv[i] = state->chainv[i+24]; } TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],3); #pragma unroll 8 for(i=0;i<8;i++) { STEP(c_CNS[(2*i)+48],c_CNS[(2*i)+48+1]); } #pragma unroll 8 for(i=0;i<8;i++) { state->chainv[i+24] = chainv[i]; chainv[i] = state->chainv[i+32]; } TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],4); #pragma unroll 8 for(i=0;i<8;i++) { STEP(c_CNS[(2*i)+64],c_CNS[(2*i)+64+1]); } #pragma unroll 8 for(i=0;i<8;i++) { state->chainv[i+32] = chainv[i]; } } __device__ __forceinline__ void Update512(hashState *state, const BitSequence *data) { #pragma unroll 8 for(int i=0;i<8;i++) state->buffer[i] = cuda_swab32(((uint32_t*)data)[i]); rnd512(state); #pragma unroll 8 for(int i=0;i<8;i++) state->buffer[i] = cuda_swab32(((uint32_t*)(data+32))[i]); rnd512(state); } /***************************************************/ __device__ __forceinline__ void finalization512(hashState *state, uint32_t *b) { int i,j; state->buffer[0] = 0x80000000; #pragma unroll 7 for(int i=1;i<8;i++) state->buffer[i] = 0; rnd512(state); /*---- blank round with m=0 ----*/ #pragma unroll 8 for(i=0;i<8;i++) state->buffer[i] =0; rnd512(state); #pragma unroll 8 for(i=0;i<8;i++) { b[i] = 0; #pragma unroll 5 for(j=0;j<5;j++) { b[i] ^= state->chainv[i+8*j]; } b[i] = cuda_swab32((b[i])); } #pragma unroll 8 for(i=0;i<8;i++) state->buffer[i]=0; rnd512(state); #pragma unroll 8 for(i=0;i<8;i++) { b[8+i] = 0; #pragma unroll 5 for(j=0;j<5;j++) { b[8+i] ^= state->chainv[i+8*j]; } b[8 + i] = cuda_swab32((b[8 + i])); } } /***************************************************/ // Die Hash-Funktion __global__ void x11_luffa512_gpu_hash_64(uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); int hashPosition = nounce - startNounce; uint32_t *Hash = (uint32_t*)&g_hash[8 * hashPosition]; hashState state; #pragma unroll 40 for(int i=0;i<40;i++) state.chainv[i] = c_IV[i]; #pragma unroll 8 for(int i=0;i<8;i++) state.buffer[i] = 0; Update512(&state, (BitSequence*)Hash); finalization512(&state, (uint32_t*)Hash); } } // Setup Function __host__ void x11_luffa512_cpu_init(int thr_id, uint32_t threads) { CUDA_CALL_OR_RET(cudaMemcpyToSymbol(c_IV, h_IV, sizeof(h_IV), 0, cudaMemcpyHostToDevice)); CUDA_CALL_OR_RET(cudaMemcpyToSymbol(c_CNS, h_CNS, sizeof(h_CNS), 0, cudaMemcpyHostToDevice)); } __host__ void x11_luffa512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) { const uint32_t threadsperblock = 256; // berechne wie viele Thread Blocks wir brauchen dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); // Größe des dynamischen Shared Memory Bereichs size_t shared_size = 0; x11_luffa512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector); MyStreamSynchronize(NULL, order, thr_id); }