/* * whirlpool routine (djm) */ extern "C" { #include "sph/sph_whirlpool.h" #include "miner.h" } #include "cuda_helper.h" static uint32_t *d_hash[8]; extern void x15_whirlpool_cpu_init(int thr_id, int threads, int mode); extern void x15_whirlpool_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); extern void whirlpool512_setBlock_80(void *pdata, const void *ptarget); extern void whirlpool512_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, uint32_t *d_hash, int order); extern uint32_t whirlpool512_cpu_finalhash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); // CPU Hash function extern "C" void wcoinhash(void *state, const void *input) { sph_whirlpool_context ctx_whirlpool; unsigned char hash[128]; // uint32_t hashA[16], hashB[16]; #define hashB hash+64 memset(hash, 0, sizeof hash); // shavite 1 sph_whirlpool1_init(&ctx_whirlpool); sph_whirlpool1(&ctx_whirlpool, input, 80); sph_whirlpool1_close(&ctx_whirlpool, hash); sph_whirlpool1_init(&ctx_whirlpool); sph_whirlpool1(&ctx_whirlpool, hash, 64); sph_whirlpool1_close(&ctx_whirlpool, hashB); sph_whirlpool1_init(&ctx_whirlpool); sph_whirlpool1(&ctx_whirlpool, hashB, 64); sph_whirlpool1_close(&ctx_whirlpool, hash); sph_whirlpool1_init(&ctx_whirlpool); sph_whirlpool1(&ctx_whirlpool, hash, 64); sph_whirlpool1_close(&ctx_whirlpool, hash); memcpy(state, hash, 32); } extern "C" int scanhash_whc(int thr_id, uint32_t *pdata, const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done) { const uint32_t first_nonce = pdata[19]; static bool init[8] = {0,0,0,0,0,0,0,0}; uint32_t endiandata[20]; int throughput = opt_work_size ? opt_work_size : (1 << 19); // 256*256*8; throughput = min(throughput, max_nonce - first_nonce); if (opt_benchmark) ((uint32_t*)ptarget)[7] = 0x0000ff; if (!init[thr_id]) { cudaSetDevice(device_map[thr_id]); // Konstanten kopieren, Speicher belegen cudaMalloc(&d_hash[thr_id], 16 * sizeof(uint32_t) * throughput); x15_whirlpool_cpu_init(thr_id, throughput, 1 /* old whirlpool */); init[thr_id] = true; } for (int k=0; k < 20; k++) { be32enc(&endiandata[k], ((uint32_t*)pdata)[k]); } whirlpool512_setBlock_80((void*)endiandata, ptarget); do { uint32_t foundNonce; int order = 0; whirlpool512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++); x15_whirlpool_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); x15_whirlpool_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); foundNonce = whirlpool512_cpu_finalhash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); if (foundNonce != 0xffffffff) { uint32_t vhash64[8]; uint32_t Htarg = ptarget[7]; be32enc(&endiandata[19], foundNonce); wcoinhash(vhash64, endiandata); if (vhash64[7] <= Htarg && fulltest(vhash64, ptarget)) { pdata[19] = foundNonce; *hashes_done = foundNonce - first_nonce + 1; return 1; } else if (vhash64[7] > Htarg) { applog(LOG_INFO, "GPU #%d: result for %08x is not in range: %x > %x", thr_id, foundNonce, vhash64[7], Htarg); } else { applog(LOG_INFO, "GPU #%d: result for %08x does not validate on CPU!", thr_id, foundNonce); } } pdata[19] += throughput; } while (pdata[19] < max_nonce && !work_restart[thr_id].restart); *hashes_done = pdata[19] - first_nonce + 1; return 0; }