// Auf Myriadcoin spezialisierte Version von Groestl #include #include "cuda_runtime.h" #include "device_launch_parameters.h" #include #include // it's unfortunate that this is a compile time constant. #define MAXWELL_OR_FERMI 1 // aus cpu-miner.c extern int device_map[8]; // aus heavy.cu extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); // Folgende Definitionen später durch header ersetzen typedef unsigned char uint8_t; typedef unsigned short uint16_t; typedef unsigned int uint32_t; // diese Struktur wird in der Init Funktion angefordert static cudaDeviceProp props; // globaler Speicher für alle HeftyHashes aller Threads __constant__ uint32_t pTarget[8]; // Single GPU extern uint32_t *d_resultNonce[8]; __constant__ uint32_t myriadgroestl_gpu_msg[32]; // muss expandiert werden __constant__ uint32_t myr_sha256_gpu_constantTable[64]; __constant__ uint32_t myr_sha256_gpu_hashTable[8]; uint32_t myr_sha256_cpu_hashTable[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; uint32_t myr_sha256_cpu_constantTable[] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, }; #if __CUDA_ARCH__ < 350 // Kepler (Compute 3.0) #define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n)))) #else // Kepler (Compute 3.5) #define ROTR32(x, n) __funnelshift_r( (x), (x), (n) ) #endif #define R(x, n) ((x) >> (n)) #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define S0(x) (ROTR32(x, 2) ^ ROTR32(x, 13) ^ ROTR32(x, 22)) #define S1(x) (ROTR32(x, 6) ^ ROTR32(x, 11) ^ ROTR32(x, 25)) #define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3)) #define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10)) #define SWAB32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) ) __device__ void myriadgroestl_gpu_sha256(uint32_t *message) { uint32_t W1[16]; uint32_t W2[16]; // Initialisiere die register a bis h mit der Hash-Tabelle uint32_t regs[8]; uint32_t hash[8]; // pre #pragma unroll 8 for (int k=0; k < 8; k++) { regs[k] = myr_sha256_gpu_hashTable[k]; hash[k] = regs[k]; } #pragma unroll 16 for(int k=0;k<16;k++) W1[k] = SWAB32(message[k]); // Progress W1 #pragma unroll 16 for(int j=0;j<16;j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; regs[0] = T1 + T2; regs[4] += T1; } // Progress W2...W3 #pragma unroll 3 for(int k=0;k<3;k++) { #pragma unroll 2 for(int j=0;j<2;j++) W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; #pragma unroll 5 for(int j=2;j<7;j++) W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; #pragma unroll 8 for(int j=7;j<15;j++) W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; // Rundenfunktion #pragma unroll 16 for(int j=0;j<16;j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16 * (k+1)] + W2[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; regs[0] = T1 + T2; regs[4] += T1; } #pragma unroll 16 for(int j=0;j<16;j++) W1[j] = W2[j]; } #pragma unroll 8 for(int k=0;k<8;k++) hash[k] += regs[k]; ///// ///// Zweite Runde (wegen Msg-Padding) ///// #pragma unroll 8 for(int k=0;k<8;k++) regs[k] = hash[k]; W1[0] = SWAB32(0x80); #pragma unroll 14 for(int k=1;k<15;k++) W1[k] = 0; W1[15] = 512; // Progress W1 #pragma unroll 16 for(int j=0;j<16;j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; regs[0] = T1 + T2; regs[4] += T1; } // Progress W2...W3 #pragma unroll 3 for(int k=0;k<3;k++) { #pragma unroll 2 for(int j=0;j<2;j++) W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; #pragma unroll 5 for(int j=2;j<7;j++) W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; #pragma unroll 8 for(int j=7;j<15;j++) W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; // Rundenfunktion #pragma unroll 16 for(int j=0;j<16;j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16 * (k+1)] + W2[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; regs[0] = T1 + T2; regs[4] += T1; } #pragma unroll 16 for(int j=0;j<16;j++) W1[j] = W2[j]; } #pragma unroll 8 for(int k=0;k<8;k++) hash[k] += regs[k]; //// FERTIG #pragma unroll 8 for(int k=0;k<8;k++) message[k] = SWAB32(hash[k]); } #define SPH_C32(x) ((uint32_t)(x ## U)) #define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF)) #define PC32up(j, r) ((uint32_t)((j) + (r))) #define PC32dn(j, r) 0 #define QC32up(j, r) 0xFFFFFFFF #define QC32dn(j, r) (((uint32_t)(r) << 24) ^ SPH_T32(~((uint32_t)(j) << 24))) #define B32_0(x) __byte_perm(x, 0, 0x4440) //((x) & 0xFF) #define B32_1(x) __byte_perm(x, 0, 0x4441) //(((x) >> 8) & 0xFF) #define B32_2(x) __byte_perm(x, 0, 0x4442) //(((x) >> 16) & 0xFF) #define B32_3(x) __byte_perm(x, 0, 0x4443) //((x) >> 24) #if MAXWELL_OR_FERMI #define USE_SHARED 1 // Maxwell and Fermi cards get the best speed with SHARED access it seems. #if USE_SHARED #define T0up(x) (*((uint32_t*)mixtabs + ( (x)))) #define T0dn(x) (*((uint32_t*)mixtabs + (256+(x)))) #define T1up(x) (*((uint32_t*)mixtabs + (512+(x)))) #define T1dn(x) (*((uint32_t*)mixtabs + (768+(x)))) #define T2up(x) (*((uint32_t*)mixtabs + (1024+(x)))) #define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x)))) #define T3up(x) (*((uint32_t*)mixtabs + (1536+(x)))) #define T3dn(x) (*((uint32_t*)mixtabs + (1792+(x)))) #else #define T0up(x) tex1Dfetch(t0up1, x) #define T0dn(x) tex1Dfetch(t0dn1, x) #define T1up(x) tex1Dfetch(t1up1, x) #define T1dn(x) tex1Dfetch(t1dn1, x) #define T2up(x) tex1Dfetch(t2up1, x) #define T2dn(x) tex1Dfetch(t2dn1, x) #define T3up(x) tex1Dfetch(t3up1, x) #define T3dn(x) tex1Dfetch(t3dn1, x) #endif #else #define USE_SHARED 1 // a healthy mix between shared and textured access provides the highest speed on Compute 3.0 and 3.5! #define T0up(x) (*((uint32_t*)mixtabs + ( (x)))) #define T0dn(x) tex1Dfetch(t0dn1, x) #define T1up(x) tex1Dfetch(t1up1, x) #define T1dn(x) (*((uint32_t*)mixtabs + (768+(x)))) #define T2up(x) tex1Dfetch(t2up1, x) #define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x)))) #define T3up(x) (*((uint32_t*)mixtabs + (1536+(x)))) #define T3dn(x) tex1Dfetch(t3dn1, x) #endif texture t0up1; texture t0dn1; texture t1up1; texture t1dn1; texture t2up1; texture t2dn1; texture t3up1; texture t3dn1; extern uint32_t T0up_cpu[]; extern uint32_t T0dn_cpu[]; extern uint32_t T1up_cpu[]; extern uint32_t T1dn_cpu[]; extern uint32_t T2up_cpu[]; extern uint32_t T2dn_cpu[]; extern uint32_t T3up_cpu[]; extern uint32_t T3dn_cpu[]; #define SWAB32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) ) __device__ __forceinline__ void myriadgroestl_perm_P(uint32_t *a, char *mixtabs) { uint32_t t[32]; //#pragma unroll 14 for(int r=0;r<14;r++) { switch(r) { case 0: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 0); break; case 1: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 1); break; case 2: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 2); break; case 3: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 3); break; case 4: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 4); break; case 5: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 5); break; case 6: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 6); break; case 7: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 7); break; case 8: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 8); break; case 9: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 9); break; case 10: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 10); break; case 11: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 11); break; case 12: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 12); break; case 13: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 13); break; } // RBTT #pragma unroll 16 for(int k=0;k<32;k+=2) { uint32_t t0_0 = B32_0(a[(k ) & 0x1f]), t9_0 = B32_0(a[(k + 9) & 0x1f]); uint32_t t2_1 = B32_1(a[(k + 2) & 0x1f]), t11_1 = B32_1(a[(k + 11) & 0x1f]); uint32_t t4_2 = B32_2(a[(k + 4) & 0x1f]), t13_2 = B32_2(a[(k + 13) & 0x1f]); uint32_t t6_3 = B32_3(a[(k + 6) & 0x1f]), t23_3 = B32_3(a[(k + 23) & 0x1f]); t[k + 0] = T0up( t0_0 ) ^ T1up( t2_1 ) ^ T2up( t4_2 ) ^ T3up( t6_3 ) ^ T0dn( t9_0 ) ^ T1dn( t11_1 ) ^ T2dn( t13_2 ) ^ T3dn( t23_3 ); t[k + 1] = T0dn( t0_0 ) ^ T1dn( t2_1 ) ^ T2dn( t4_2 ) ^ T3dn( t6_3 ) ^ T0up( t9_0 ) ^ T1up( t11_1 ) ^ T2up( t13_2 ) ^ T3up( t23_3 ); } #pragma unroll 32 for(int k=0;k<32;k++) a[k] = t[k]; } } __device__ __forceinline__ void myriadgroestl_perm_Q(uint32_t *a, char *mixtabs) { //#pragma unroll 14 for(int r=0;r<14;r++) { uint32_t t[32]; switch(r) { case 0: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 0); a[(k*2)+1] ^= QC32dn(k * 0x10, 0);} break; case 1: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 1); a[(k*2)+1] ^= QC32dn(k * 0x10, 1);} break; case 2: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 2); a[(k*2)+1] ^= QC32dn(k * 0x10, 2);} break; case 3: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 3); a[(k*2)+1] ^= QC32dn(k * 0x10, 3);} break; case 4: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 4); a[(k*2)+1] ^= QC32dn(k * 0x10, 4);} break; case 5: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 5); a[(k*2)+1] ^= QC32dn(k * 0x10, 5);} break; case 6: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 6); a[(k*2)+1] ^= QC32dn(k * 0x10, 6);} break; case 7: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 7); a[(k*2)+1] ^= QC32dn(k * 0x10, 7);} break; case 8: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 8); a[(k*2)+1] ^= QC32dn(k * 0x10, 8);} break; case 9: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 9); a[(k*2)+1] ^= QC32dn(k * 0x10, 9);} break; case 10: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 10); a[(k*2)+1] ^= QC32dn(k * 0x10, 10);} break; case 11: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 11); a[(k*2)+1] ^= QC32dn(k * 0x10, 11);} break; case 12: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 12); a[(k*2)+1] ^= QC32dn(k * 0x10, 12);} break; case 13: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 13); a[(k*2)+1] ^= QC32dn(k * 0x10, 13);} break; } // RBTT #pragma unroll 16 for(int k=0;k<32;k+=2) { uint32_t t2_0 = B32_0(a[(k + 2) & 0x1f]), t1_0 = B32_0(a[(k + 1) & 0x1f]); uint32_t t6_1 = B32_1(a[(k + 6) & 0x1f]), t5_1 = B32_1(a[(k + 5) & 0x1f]); uint32_t t10_2 = B32_2(a[(k + 10) & 0x1f]), t9_2 = B32_2(a[(k + 9) & 0x1f]); uint32_t t22_3 = B32_3(a[(k + 22) & 0x1f]), t13_3 = B32_3(a[(k + 13) & 0x1f]); t[k + 0] = T0up( t2_0 ) ^ T1up( t6_1 ) ^ T2up( t10_2 ) ^ T3up( t22_3 ) ^ T0dn( t1_0 ) ^ T1dn( t5_1 ) ^ T2dn( t9_2 ) ^ T3dn( t13_3 ); t[k + 1] = T0dn( t2_0 ) ^ T1dn( t6_1 ) ^ T2dn( t10_2 ) ^ T3dn( t22_3 ) ^ T0up( t1_0 ) ^ T1up( t5_1 ) ^ T2up( t9_2 ) ^ T3up( t13_3 ); } #pragma unroll 32 for(int k=0;k<32;k++) a[k] = t[k]; } } __global__ void myriadgroestl_gpu_hash(int threads, uint32_t startNounce, uint32_t *resNounce) { #if USE_SHARED extern __shared__ char mixtabs[]; if (threadIdx.x < 256) { *((uint32_t*)mixtabs + ( threadIdx.x)) = tex1Dfetch(t0up1, threadIdx.x); *((uint32_t*)mixtabs + (256+threadIdx.x)) = tex1Dfetch(t0dn1, threadIdx.x); *((uint32_t*)mixtabs + (512+threadIdx.x)) = tex1Dfetch(t1up1, threadIdx.x); *((uint32_t*)mixtabs + (768+threadIdx.x)) = tex1Dfetch(t1dn1, threadIdx.x); *((uint32_t*)mixtabs + (1024+threadIdx.x)) = tex1Dfetch(t2up1, threadIdx.x); *((uint32_t*)mixtabs + (1280+threadIdx.x)) = tex1Dfetch(t2dn1, threadIdx.x); *((uint32_t*)mixtabs + (1536+threadIdx.x)) = tex1Dfetch(t3up1, threadIdx.x); *((uint32_t*)mixtabs + (1792+threadIdx.x)) = tex1Dfetch(t3dn1, threadIdx.x); } __syncthreads(); #endif int thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { // GROESTL uint32_t message[32]; uint32_t state[32]; #pragma unroll 32 for(int k=0;k<32;k++) message[k] = myriadgroestl_gpu_msg[k]; uint32_t nounce = startNounce + thread; message[19] = SWAB32(nounce); #pragma unroll 32 for(int u=0;u<32;u++) state[u] = message[u]; state[31] ^= 0x20000; // Perm #if USE_SHARED myriadgroestl_perm_P(state, mixtabs); state[31] ^= 0x20000; myriadgroestl_perm_Q(message, mixtabs); #else myriadgroestl_perm_P(state, NULL); state[31] ^= 0x20000; myriadgroestl_perm_Q(message, NULL); #endif #pragma unroll 32 for(int u=0;u<32;u++) state[u] ^= message[u]; #pragma unroll 32 for(int u=0;u<32;u++) message[u] = state[u]; #if USE_SHARED myriadgroestl_perm_P(message, mixtabs); #else myriadgroestl_perm_P(message, NULL); #endif #pragma unroll 32 for(int u=0;u<32;u++) state[u] ^= message[u]; uint32_t out_state[16]; #pragma unroll 16 for(int u=0;u<16;u++) out_state[u] = state[u+16]; myriadgroestl_gpu_sha256(out_state); int i, position = -1; bool rc = true; #pragma unroll 8 for (i = 7; i >= 0; i--) { if (out_state[i] > pTarget[i]) { if(position < i) { position = i; rc = false; } } if (out_state[i] < pTarget[i]) { if(position < i) { position = i; rc = true; } } } if(rc == true) if(resNounce[0] > nounce) resNounce[0] = nounce; } } #define texDef(texname, texmem, texsource, texsize) \ unsigned int *texmem; \ cudaMalloc(&texmem, texsize); \ cudaMemcpy(texmem, texsource, texsize, cudaMemcpyHostToDevice); \ texname.normalized = 0; \ texname.filterMode = cudaFilterModePoint; \ texname.addressMode[0] = cudaAddressModeClamp; \ { cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(); \ cudaBindTexture(NULL, &texname, texmem, &channelDesc, texsize ); } \ // Setup-Funktionen __host__ void myriadgroestl_cpu_init(int thr_id, int threads) { cudaSetDevice(device_map[thr_id]); cudaMemcpyToSymbol( myr_sha256_gpu_hashTable, myr_sha256_cpu_hashTable, sizeof(uint32_t) * 8 ); cudaMemcpyToSymbol( myr_sha256_gpu_constantTable, myr_sha256_cpu_constantTable, sizeof(uint32_t) * 64 ); cudaGetDeviceProperties(&props, device_map[thr_id]); // Texturen mit obigem Makro initialisieren texDef(t0up1, d_T0up, T0up_cpu, sizeof(uint32_t)*256); texDef(t0dn1, d_T0dn, T0dn_cpu, sizeof(uint32_t)*256); texDef(t1up1, d_T1up, T1up_cpu, sizeof(uint32_t)*256); texDef(t1dn1, d_T1dn, T1dn_cpu, sizeof(uint32_t)*256); texDef(t2up1, d_T2up, T2up_cpu, sizeof(uint32_t)*256); texDef(t2dn1, d_T2dn, T2dn_cpu, sizeof(uint32_t)*256); texDef(t3up1, d_T3up, T3up_cpu, sizeof(uint32_t)*256); texDef(t3dn1, d_T3dn, T3dn_cpu, sizeof(uint32_t)*256); // Speicher für Gewinner-Nonce belegen cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t)); } __host__ void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn) { // Nachricht expandieren und setzen uint32_t msgBlock[32]; memset(msgBlock, 0, sizeof(uint32_t) * 32); memcpy(&msgBlock[0], data, 80); // Erweitere die Nachricht auf den Nachrichtenblock (padding) // Unsere Nachricht hat 80 Byte msgBlock[20] = 0x80; msgBlock[31] = 0x01000000; // groestl512 braucht hierfür keinen CPU-Code (die einzige Runde wird // auf der GPU ausgeführt) // Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch) cudaMemcpyToSymbol( myriadgroestl_gpu_msg, msgBlock, 128); cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t)); cudaMemcpyToSymbol( pTarget, pTargetIn, sizeof(uint32_t) * 8 ); } __host__ void myriadgroestl_cpu_hash(int thr_id, int threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce) { // Compute 3.x und 5.x Geräte am besten mit 768 Threads ansteuern, // alle anderen mit 512 Threads. int threadsperblock = (props.major >= 3) ? 768 : 512; // berechne wie viele Thread Blocks wir brauchen dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); // Größe des dynamischen Shared Memory Bereichs #if USE_SHARED size_t shared_size = 8 * 256 * sizeof(uint32_t); #else size_t shared_size = 0; #endif // fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); //fprintf(stderr, "ThrID: %d\n", thr_id); cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t)); myriadgroestl_gpu_hash<<>>(threads, startNounce, d_resultNonce[thr_id]); // Strategisches Sleep Kommando zur Senkung der CPU Last MyStreamSynchronize(NULL, 0, thr_id); cudaMemcpy(nounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost); }